Compare commits

..

3 Commits
PM14 ... master

Author SHA1 Message Date
George Norton 9c036f07f8
Fix save config (#27)
* Fix save config

* Fix save config when no audio is playing

* Fix build issue with the github workflow compiler
2023-10-16 18:35:38 -04:00
PloopyCo 84306c0922 Adjusted Oratory's default EQ:
- Less bass. Excursion limits happen at 30-50Hz first, so reducing response in this range makes it a little less likely this will be a problem. Plus, I like it.
- A little more response above 12kHz.

Updated config version to 4.

Added a parameter for post EQ gain. Applied once after EQ is calculated.
2023-09-14 05:06:57 -04:00
George Norton 41d4023961
Run the DAC in 24bit mode. (#25)
* Run the DAC in 24bit mode.

* Update comment.

* Remove accidental paste

* Fix distortion.

* Shift up the samples into -1..1, not much different, but we get an extra bit of resolution at the low end.
2023-09-14 04:49:56 -04:00
10 changed files with 146 additions and 75 deletions

View File

@ -54,7 +54,7 @@ static const default_configuration default_config = {
.filter = { FILTER_CONFIGURATION, sizeof(default_config.filters) },
.f1 = { PEAKING, {0}, 38.5, -21.0, 1.4 },
.f2 = { PEAKING, {0}, 60, -6.7, 0.5 },
.f3 = { LOWSHELF, {0}, 105, 5.5, 0.71 },
.f3 = { LOWSHELF, {0}, 105, 2.0, 0.71 },
.f4 = { PEAKING, {0}, 280, -3.5, 1.1 },
.f5 = { PEAKING, {0}, 350, -1.6, 6.0 },
.f6 = { PEAKING, {0}, 425, 7.8, 1.3 },
@ -66,9 +66,15 @@ static const default_configuration default_config = {
.f12 = { PEAKING, {0}, 3430, -12.2, 2.0 },
.f13 = { PEAKING, {0}, 4800, 4.0, 2.0 },
.f14 = { PEAKING, {0}, 6200, -15.0, 3.0 },
.f15 = { HIGHSHELF, {0}, 12000, -6.0, 0.71 }
.f15 = { HIGHSHELF, {0}, 12000, -3.0, 0.71 }
},
.preprocessing = { .header = { PREPROCESSING_CONFIGURATION, sizeof(default_config.preprocessing) }, -0.08f, true, {0} }
.preprocessing = {
.header = { PREPROCESSING_CONFIGURATION, sizeof(default_config.preprocessing) },
-0.376265f, // pre-EQ gain of -4.1dB
0.4125f, // post-EQ gain, set to ~3dB (1.4x, less the 1 that is added when config is applied)
true,
{0}
}
};
// Grab the last 4k page of flash for our configuration strutures.
@ -90,6 +96,13 @@ static bool reload_config = false;
static uint16_t write_offset = 0;
static uint16_t read_offset = 0;
typedef enum {
NormalOperation,
SaveRequested,
Saving
} State;
static State saveState = NormalOperation;
bool validate_filter_configuration(filter_configuration_tlv *filters)
{
if (filters->header.type != FILTER_CONFIGURATION) {
@ -316,6 +329,7 @@ bool apply_configuration(tlv_header *config) {
case PREPROCESSING_CONFIGURATION: {
preprocessing_configuration_tlv* preprocessing_config = (preprocessing_configuration_tlv*) tlv;
preprocessing.preamp = fix3_28_from_flt(1.0f + preprocessing_config->preamp);
preprocessing.postEQGain = fix3_28_from_flt(1.0f + preprocessing_config->postEQGain);
preprocessing.reverse_stereo = preprocessing_config->reverse_stereo;
break;
}
@ -350,32 +364,49 @@ void load_config() {
}
#ifndef TEST_TARGET
bool __no_inline_not_in_flash_func(save_configuration)() {
bool __no_inline_not_in_flash_func(save_config)() {
const uint8_t active_configuration = inactive_working_configuration ? 0 : 1;
tlv_header* config = (tlv_header*) working_configuration[active_configuration];
if (validate_configuration(config)) {
power_down_dac();
switch (saveState) {
case SaveRequested:
if (validate_configuration(config)) {
/* Turn the DAC off so we don't make a huge noise when disrupting
real time audio operation. */
power_down_dac();
const size_t config_length = config->length - ((size_t)config->value - (size_t)config);
// Write data to flash
uint8_t flash_buffer[CFG_BUFFER_SIZE];
flash_header_tlv* flash_header = (flash_header_tlv*) flash_buffer;
flash_header->header.type = FLASH_HEADER;
flash_header->header.length = sizeof(flash_header_tlv) + config_length;
flash_header->magic = FLASH_MAGIC;
flash_header->version = CONFIG_VERSION;
memcpy((void*)(flash_header->tlvs), config->value, config_length);
const size_t config_length = config->length - ((size_t)config->value - (size_t)config);
// Write data to flash
uint8_t flash_buffer[CFG_BUFFER_SIZE];
flash_header_tlv* flash_header = (flash_header_tlv*) flash_buffer;
flash_header->header.type = FLASH_HEADER;
flash_header->header.length = sizeof(flash_header_tlv) + config_length;
flash_header->magic = FLASH_MAGIC;
flash_header->version = CONFIG_VERSION;
memcpy((void*)(flash_header->tlvs), config->value, config_length);
uint32_t ints = save_and_disable_interrupts();
flash_range_erase(USER_CONFIGURATION_OFFSET, FLASH_SECTOR_SIZE);
flash_range_program(USER_CONFIGURATION_OFFSET, flash_buffer, CFG_BUFFER_SIZE);
restore_interrupts(ints);
uint32_t ints = save_and_disable_interrupts();
flash_range_erase(USER_CONFIGURATION_OFFSET, FLASH_SECTOR_SIZE);
flash_range_program(USER_CONFIGURATION_OFFSET, flash_buffer, CFG_BUFFER_SIZE);
restore_interrupts(ints);
saveState = Saving;
power_up_dac();
return true;
// Return true, so the caller skips processing audio
return true;
}
// Validation failed, give up.
saveState = NormalOperation;
break;
case Saving:
/* Turn the DAC off so we don't make a huge noise when disrupting
real time audio operation. */
power_up_dac();
saveState = NormalOperation;
return false;
default:
break;
}
return false;
}
@ -401,7 +432,14 @@ bool process_cmd(tlv_header* cmd) {
}
break;
case SAVE_CONFIGURATION: {
if (cmd->length == 4 && save_configuration()) {
if (cmd->length == 4) {
saveState = SaveRequested;
if (audio_state.interface == 0) {
// The OS will configure the alternate "zero" interface when the device is not in use
// in this sate we can write to flash now. Otherwise, defer the save until we get the next
// usb packet.
save_config();
}
result->type = OK;
result->length = 4;
return true;

View File

@ -52,6 +52,7 @@ void config_in_packet(struct usb_endpoint *ep);
void config_out_packet(struct usb_endpoint *ep);
void configuration_ep_on_cancel(struct usb_endpoint *ep);
extern void load_config();
extern bool save_config();
extern void apply_config_changes();
#endif // CONFIGURATION_MANAGER_H

View File

@ -17,8 +17,8 @@
#include <stdint.h>
#define FLASH_MAGIC 0x2E8AFEDD
#define CONFIG_VERSION 3
#define MINIMUM_CONFIG_VERSION 3
#define CONFIG_VERSION 4
#define MINIMUM_CONFIG_VERSION 4
enum structure_types {
// Commands/Responses, these are container TLVs. The Value will be a set of TLV structures.
@ -98,9 +98,13 @@ typedef struct __attribute__((__packed__)) _flash_header_tlv {
const uint8_t tlvs[0];
} flash_header_tlv;
/// @brief Holds values relating to processing surrounding the EQ calculation.
typedef struct __attribute__((__packed__)) _preprocessing_configuration_tlv {
tlv_header header;
/// @brief Gain applied to input signal before EQ chain. Use to avoid clipping due to overflow in the biquad filters of the EQ.
float preamp;
/// @brief Gain applied to the output of the EQ chain. Used to set output volume.
float postEQGain;
uint8_t reverse_stereo;
uint8_t reserved[3];
} preprocessing_configuration_tlv;

View File

@ -41,7 +41,7 @@ static const fix3_28_t fix16_zero = 0x00000000;
static inline fix3_28_t norm_fix3_28_from_s16sample(int16_t);
static inline int16_t norm_fix3_28_to_s16sample(fix3_28_t);
static inline int32_t norm_fix3_28_to_s16sample(fix3_28_t);
static inline fix3_28_t fix3_28_from_flt(float);

View File

@ -32,18 +32,18 @@ static inline fix3_28_t norm_fix3_28_from_s16sample(int16_t a) {
/* So, we're using a Q3.28 fixed point system here, and we want the incoming
audio signal to be represented as a number between -1 and 1. To do this,
we need the 16-bit value to map to the 28-bit right-of-decimal field in
our fixed point number. 28-16 = 12, so we shift the incoming value by
that much to covert it to the desired Q3.28 format and do the normalization
all in one go.
our fixed point number. 28-16 = 12 + the sign bit = 13, so we shift the
incoming value by that much to covert it to the desired Q3.28 format and
do the normalization all in one go.
*/
return (fix3_28_t)a << 12;
return (fix3_28_t)a << 13;
}
/// @brief Convert fixed point samples into signed integer. Used to convert
/// calculated sample to one that the DAC can understand.
/// @param a
/// @return Signed 16-bit integer.
static inline int16_t norm_fix3_28_to_s16sample(fix3_28_t a) {
static inline int32_t norm_fix3_28_to_s16sample(fix3_28_t a) {
// Handle rounding up front, adding one can cause an overflow/underflow
// It's not clear exactly how this works, so we'll disable it for now.
@ -56,22 +56,20 @@ static inline int16_t norm_fix3_28_to_s16sample(fix3_28_t a) {
*/
// Saturate the value if an overflow has occurred
uint32_t upper = (a >> 30);
uint32_t upper = (a >> 29);
if (a < 0) {
if (~upper)
{
return SHRT_MIN;
if (~upper) {
return 0xff800000;
}
} else {
if (upper)
{
return SHRT_MAX;
if (upper) {
return 0x00efffff;
}
}
/* When we converted the USB audio sample to a fixed point number, we applied
a normalization, or a gain of 1/65536. To convert it back, we can undo that
by shifting it back by the same amount we shifted it in the first place. */
return (a >> 12);
by shifting it but we output 24bts, so the shift is reduced. */
return (a >> 6);
}
static inline fix3_28_t fix3_28_from_flt(float a) {

View File

@ -52,10 +52,12 @@ static uint8_t *userbuf;
audio_state_config audio_state = {
.freq = 48000,
.de_emphasis_frequency = 0x1, // 48khz
.interface = 0
};
preprocessing_config preprocessing = {
.preamp = fix16_one,
.postEQGain = fix16_one,
.reverse_stereo = false
};
@ -124,6 +126,18 @@ static void __no_inline_not_in_flash_func(_as_audio_packet)(struct usb_endpoint
int32_t *out = (int32_t *) userbuf;
int samples = usb_buffer->data_len / 2;
// Make sure core 1 is ready for us.
multicore_fifo_pop_blocking();
if (save_config()) {
// Skip processing while we are writing to flash
multicore_fifo_push_blocking(CORE0_ABORTED);
// keep on truckin'
usb_grow_transfer(ep->current_transfer, 1);
usb_packet_done(ep);
return;
}
if (preprocessing.reverse_stereo) {
for (int i = 0; i < samples; i+=2) {
out[i] = in[i+1];
@ -135,21 +149,22 @@ static void __no_inline_not_in_flash_func(_as_audio_packet)(struct usb_endpoint
out[i] = in[i];
}
// Make sure core 1 is ready for us.
multicore_fifo_pop_blocking();
multicore_fifo_push_blocking(CORE0_READY);
multicore_fifo_push_blocking(samples);
for (int j = 0; j < filter_stages; j++) {
// Left channel filter
for (int i = 0; i < samples; i += 2) {
fix3_28_t x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preprocessing.preamp);
// Left channel filter
for (int i = 0; i < samples; i += 2) {
fix3_28_t x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preprocessing.preamp);
for (int j = 0; j < filter_stages; j++) {
x_f16 = bqf_transform(x_f16, &bqf_filters_left[j],
&bqf_filters_mem_left[j]);
out[i] = (int32_t) norm_fix3_28_to_s16sample(x_f16);
}
/* Apply post-EQ gain. */
x_f16 = fix16_mul( x_f16, preprocessing.postEQGain);
out[i] = (int32_t) norm_fix3_28_to_s16sample(x_f16);
}
// Block until core 1 has finished transforming the data
@ -182,20 +197,23 @@ void __no_inline_not_in_flash_func(core1_entry)() {
// Block until the userbuf is filled with data
uint32_t ready = multicore_fifo_pop_blocking();
while (ready != CORE0_READY)
ready = multicore_fifo_pop_blocking();
if (ready == CORE0_ABORTED) continue;
const uint32_t samples = multicore_fifo_pop_blocking();
for (int j = 0; j < filter_stages; j++) {
for (int i = 1; i < samples; i += 2) {
fix3_28_t x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preprocessing.preamp);
/* Right channel EQ. */
for (int i = 1; i < samples; i += 2) {
/* Apply EQ pre-filter gain to avoid clipping. */
fix3_28_t x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preprocessing.preamp);
/* Apply the biquad filters one by one. */
for (int j = 0; j < filter_stages; j++) {
x_f16 = bqf_transform(x_f16, &bqf_filters_right[j],
&bqf_filters_mem_right[j]);
out[i] = (int16_t) norm_fix3_28_to_s16sample(x_f16);
}
/* Apply post-EQ gain. */
x_f16 = fix16_mul( x_f16, preprocessing.postEQGain);
out[i] = (int32_t) norm_fix3_28_to_s16sample(x_f16);
}
// Signal to core 0 that the data has all been transformed
@ -273,9 +291,9 @@ void setup() {
// Same here, pal. Hands off.
sleep_ms(100);
// Set data format to 16 bit right justified, MSB first
// Set data format to 24 bit right justified, MSB first
buf[0] = 67; // register addr
buf[1] = 0x03; // data
buf[1] = 0x02; // data
i2c_write_blocking(i2c0, PCM_I2C_ADDR, buf, 2, false);
i2s_write_obj.sck_pin = PCM3060_DAC_SCK_PIN;
@ -752,6 +770,7 @@ static const struct usb_transfer_type _audio_cmd_transfer_type = {
static bool as_set_alternate(struct usb_interface *interface, uint alt) {
assert(interface == &as_op_interface);
audio_state.interface = alt;
switch (alt) {
case 0: power_down_dac(); return true;
case 1: power_up_dac(); return true;
@ -960,7 +979,7 @@ void power_down_dac() {
i2c_write_blocking(i2c0, PCM_I2C_ADDR, buf, 2, false);
}
void power_up_dac() {
void power_up_dac() {
uint8_t buf[2];
buf[0] = 64; // register addr
buf[1] = 0xE0; // DAC normal mode

View File

@ -76,6 +76,7 @@ typedef struct _audio_state_config {
int16_t _target_pcm3060_registers;
};
int16_t pcm3060_registers;
int8_t interface;
} audio_state_config;
extern audio_state_config audio_state;
@ -110,6 +111,8 @@ typedef struct _audio_device_config {
typedef struct _preprocessing_config {
fix3_28_t preamp;
/// @brief Apply this gain after applying EQ, to set output volume without causing overflow in the EQ calculations.
fix3_28_t postEQGain;
int reverse_stereo;
} preprocessing_config;
@ -147,6 +150,7 @@ static char *descriptor_strings[] = {
#define SAMPLING_FREQ (CODEC_FREQ / 192)
#define CORE0_READY 19813219
#define CORE0_ABORTED 91231891
#define CORE1_READY 72965426
/*****************************************************************************

View File

@ -6,7 +6,6 @@ set(CMAKE_CXX_STANDARD 17)
add_executable(filter_test
filter_test.c
../code/fix16.c
../code/bqf.c
../code/configuration_manager.c
)

View File

@ -17,7 +17,7 @@ Run `filter_test` to process the PCM samples. The `filter_test` program takes tw
You can listen to the PCM files using ffplay (which is usually included with ffmpeg):
```
ffplay -f s16le -ar 48000 -ac 2 output.pcm
ffplay -f s24le -ar 48000 -ac 2 output.pcm
```
If there are no obvious problems, go ahead and flash your firmware.

View File

@ -32,7 +32,7 @@ int main(int argc, char* argv[])
// we dont need to store the whole input and output files in memory.
int samples = input_size / 2;
int16_t *in = (int16_t *) calloc(samples, sizeof(int16_t));
int16_t *out = (int16_t *) calloc(samples, sizeof(int16_t));
int32_t *out = (int32_t *) calloc(samples, sizeof(int32_t));
fread(in, samples, sizeof(int16_t), input);
fclose(input);
@ -54,31 +54,39 @@ int main(int argc, char* argv[])
out[i] = in[i];
}
for (int j = 0; j < filter_stages; j++)
{
for (int i = 0; i < samples; i ++)
{
// Left channel filter
fix16_t x_f16 = fix16_from_s16sample((int16_t) out[i]);
const fix3_28_t preamp = fix3_28_from_flt(0.92f);
for (int i = 0; i < samples; i ++)
{
// Left channel filter
fix3_28_t x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preamp);
for (int j = 0; j < filter_stages; j++)
{
x_f16 = bqf_transform(x_f16, &bqf_filters_left[j],
&bqf_filters_mem_left[j]);
}
out[i] = (int32_t) fix16_to_s16sample(x_f16);
out[i] = (int32_t) norm_fix3_28_to_s16sample(x_f16);
// Right channel filter
i++;
x_f16 = fix16_from_s16sample((int16_t) out[i]);
// Right channel filter
i++;
x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preamp);
for (int j = 0; j < filter_stages; j++)
{
x_f16 = bqf_transform(x_f16, &bqf_filters_right[j],
&bqf_filters_mem_right[j]);
out[i] = (int16_t) fix16_to_s16sample(x_f16);
}
out[i] = (int32_t) norm_fix3_28_to_s16sample(x_f16);
//printf("%08x\n", out[i]);
}
// Write out the processed audio.
fwrite(out, samples, sizeof(int16_t), output);
for (int i=0; i<samples; i++) {
fwrite(&out[i], 3, sizeof(int8_t), output);
}
fclose(output);
free(in);