Compare commits
3 Commits
Author | SHA1 | Date |
---|---|---|
![]() |
9c036f07f8 | |
![]() |
84306c0922 | |
![]() |
41d4023961 |
|
@ -54,7 +54,7 @@ static const default_configuration default_config = {
|
|||
.filter = { FILTER_CONFIGURATION, sizeof(default_config.filters) },
|
||||
.f1 = { PEAKING, {0}, 38.5, -21.0, 1.4 },
|
||||
.f2 = { PEAKING, {0}, 60, -6.7, 0.5 },
|
||||
.f3 = { LOWSHELF, {0}, 105, 5.5, 0.71 },
|
||||
.f3 = { LOWSHELF, {0}, 105, 2.0, 0.71 },
|
||||
.f4 = { PEAKING, {0}, 280, -3.5, 1.1 },
|
||||
.f5 = { PEAKING, {0}, 350, -1.6, 6.0 },
|
||||
.f6 = { PEAKING, {0}, 425, 7.8, 1.3 },
|
||||
|
@ -66,9 +66,15 @@ static const default_configuration default_config = {
|
|||
.f12 = { PEAKING, {0}, 3430, -12.2, 2.0 },
|
||||
.f13 = { PEAKING, {0}, 4800, 4.0, 2.0 },
|
||||
.f14 = { PEAKING, {0}, 6200, -15.0, 3.0 },
|
||||
.f15 = { HIGHSHELF, {0}, 12000, -6.0, 0.71 }
|
||||
.f15 = { HIGHSHELF, {0}, 12000, -3.0, 0.71 }
|
||||
},
|
||||
.preprocessing = { .header = { PREPROCESSING_CONFIGURATION, sizeof(default_config.preprocessing) }, -0.08f, true, {0} }
|
||||
.preprocessing = {
|
||||
.header = { PREPROCESSING_CONFIGURATION, sizeof(default_config.preprocessing) },
|
||||
-0.376265f, // pre-EQ gain of -4.1dB
|
||||
0.4125f, // post-EQ gain, set to ~3dB (1.4x, less the 1 that is added when config is applied)
|
||||
true,
|
||||
{0}
|
||||
}
|
||||
};
|
||||
|
||||
// Grab the last 4k page of flash for our configuration strutures.
|
||||
|
@ -90,6 +96,13 @@ static bool reload_config = false;
|
|||
static uint16_t write_offset = 0;
|
||||
static uint16_t read_offset = 0;
|
||||
|
||||
typedef enum {
|
||||
NormalOperation,
|
||||
SaveRequested,
|
||||
Saving
|
||||
} State;
|
||||
static State saveState = NormalOperation;
|
||||
|
||||
bool validate_filter_configuration(filter_configuration_tlv *filters)
|
||||
{
|
||||
if (filters->header.type != FILTER_CONFIGURATION) {
|
||||
|
@ -316,6 +329,7 @@ bool apply_configuration(tlv_header *config) {
|
|||
case PREPROCESSING_CONFIGURATION: {
|
||||
preprocessing_configuration_tlv* preprocessing_config = (preprocessing_configuration_tlv*) tlv;
|
||||
preprocessing.preamp = fix3_28_from_flt(1.0f + preprocessing_config->preamp);
|
||||
preprocessing.postEQGain = fix3_28_from_flt(1.0f + preprocessing_config->postEQGain);
|
||||
preprocessing.reverse_stereo = preprocessing_config->reverse_stereo;
|
||||
break;
|
||||
}
|
||||
|
@ -350,32 +364,49 @@ void load_config() {
|
|||
}
|
||||
|
||||
#ifndef TEST_TARGET
|
||||
bool __no_inline_not_in_flash_func(save_configuration)() {
|
||||
bool __no_inline_not_in_flash_func(save_config)() {
|
||||
const uint8_t active_configuration = inactive_working_configuration ? 0 : 1;
|
||||
tlv_header* config = (tlv_header*) working_configuration[active_configuration];
|
||||
|
||||
if (validate_configuration(config)) {
|
||||
power_down_dac();
|
||||
switch (saveState) {
|
||||
case SaveRequested:
|
||||
if (validate_configuration(config)) {
|
||||
/* Turn the DAC off so we don't make a huge noise when disrupting
|
||||
real time audio operation. */
|
||||
power_down_dac();
|
||||
|
||||
const size_t config_length = config->length - ((size_t)config->value - (size_t)config);
|
||||
// Write data to flash
|
||||
uint8_t flash_buffer[CFG_BUFFER_SIZE];
|
||||
flash_header_tlv* flash_header = (flash_header_tlv*) flash_buffer;
|
||||
flash_header->header.type = FLASH_HEADER;
|
||||
flash_header->header.length = sizeof(flash_header_tlv) + config_length;
|
||||
flash_header->magic = FLASH_MAGIC;
|
||||
flash_header->version = CONFIG_VERSION;
|
||||
memcpy((void*)(flash_header->tlvs), config->value, config_length);
|
||||
const size_t config_length = config->length - ((size_t)config->value - (size_t)config);
|
||||
// Write data to flash
|
||||
uint8_t flash_buffer[CFG_BUFFER_SIZE];
|
||||
flash_header_tlv* flash_header = (flash_header_tlv*) flash_buffer;
|
||||
flash_header->header.type = FLASH_HEADER;
|
||||
flash_header->header.length = sizeof(flash_header_tlv) + config_length;
|
||||
flash_header->magic = FLASH_MAGIC;
|
||||
flash_header->version = CONFIG_VERSION;
|
||||
memcpy((void*)(flash_header->tlvs), config->value, config_length);
|
||||
|
||||
uint32_t ints = save_and_disable_interrupts();
|
||||
flash_range_erase(USER_CONFIGURATION_OFFSET, FLASH_SECTOR_SIZE);
|
||||
flash_range_program(USER_CONFIGURATION_OFFSET, flash_buffer, CFG_BUFFER_SIZE);
|
||||
restore_interrupts(ints);
|
||||
uint32_t ints = save_and_disable_interrupts();
|
||||
flash_range_erase(USER_CONFIGURATION_OFFSET, FLASH_SECTOR_SIZE);
|
||||
flash_range_program(USER_CONFIGURATION_OFFSET, flash_buffer, CFG_BUFFER_SIZE);
|
||||
restore_interrupts(ints);
|
||||
saveState = Saving;
|
||||
|
||||
power_up_dac();
|
||||
|
||||
return true;
|
||||
// Return true, so the caller skips processing audio
|
||||
return true;
|
||||
}
|
||||
// Validation failed, give up.
|
||||
saveState = NormalOperation;
|
||||
break;
|
||||
case Saving:
|
||||
/* Turn the DAC off so we don't make a huge noise when disrupting
|
||||
real time audio operation. */
|
||||
power_up_dac();
|
||||
saveState = NormalOperation;
|
||||
return false;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -401,7 +432,14 @@ bool process_cmd(tlv_header* cmd) {
|
|||
}
|
||||
break;
|
||||
case SAVE_CONFIGURATION: {
|
||||
if (cmd->length == 4 && save_configuration()) {
|
||||
if (cmd->length == 4) {
|
||||
saveState = SaveRequested;
|
||||
if (audio_state.interface == 0) {
|
||||
// The OS will configure the alternate "zero" interface when the device is not in use
|
||||
// in this sate we can write to flash now. Otherwise, defer the save until we get the next
|
||||
// usb packet.
|
||||
save_config();
|
||||
}
|
||||
result->type = OK;
|
||||
result->length = 4;
|
||||
return true;
|
||||
|
|
|
@ -52,6 +52,7 @@ void config_in_packet(struct usb_endpoint *ep);
|
|||
void config_out_packet(struct usb_endpoint *ep);
|
||||
void configuration_ep_on_cancel(struct usb_endpoint *ep);
|
||||
extern void load_config();
|
||||
extern bool save_config();
|
||||
extern void apply_config_changes();
|
||||
|
||||
#endif // CONFIGURATION_MANAGER_H
|
|
@ -17,8 +17,8 @@
|
|||
#include <stdint.h>
|
||||
|
||||
#define FLASH_MAGIC 0x2E8AFEDD
|
||||
#define CONFIG_VERSION 3
|
||||
#define MINIMUM_CONFIG_VERSION 3
|
||||
#define CONFIG_VERSION 4
|
||||
#define MINIMUM_CONFIG_VERSION 4
|
||||
|
||||
enum structure_types {
|
||||
// Commands/Responses, these are container TLVs. The Value will be a set of TLV structures.
|
||||
|
@ -98,9 +98,13 @@ typedef struct __attribute__((__packed__)) _flash_header_tlv {
|
|||
const uint8_t tlvs[0];
|
||||
} flash_header_tlv;
|
||||
|
||||
/// @brief Holds values relating to processing surrounding the EQ calculation.
|
||||
typedef struct __attribute__((__packed__)) _preprocessing_configuration_tlv {
|
||||
tlv_header header;
|
||||
/// @brief Gain applied to input signal before EQ chain. Use to avoid clipping due to overflow in the biquad filters of the EQ.
|
||||
float preamp;
|
||||
/// @brief Gain applied to the output of the EQ chain. Used to set output volume.
|
||||
float postEQGain;
|
||||
uint8_t reverse_stereo;
|
||||
uint8_t reserved[3];
|
||||
} preprocessing_configuration_tlv;
|
||||
|
|
|
@ -41,7 +41,7 @@ static const fix3_28_t fix16_zero = 0x00000000;
|
|||
|
||||
static inline fix3_28_t norm_fix3_28_from_s16sample(int16_t);
|
||||
|
||||
static inline int16_t norm_fix3_28_to_s16sample(fix3_28_t);
|
||||
static inline int32_t norm_fix3_28_to_s16sample(fix3_28_t);
|
||||
|
||||
static inline fix3_28_t fix3_28_from_flt(float);
|
||||
|
||||
|
|
|
@ -32,18 +32,18 @@ static inline fix3_28_t norm_fix3_28_from_s16sample(int16_t a) {
|
|||
/* So, we're using a Q3.28 fixed point system here, and we want the incoming
|
||||
audio signal to be represented as a number between -1 and 1. To do this,
|
||||
we need the 16-bit value to map to the 28-bit right-of-decimal field in
|
||||
our fixed point number. 28-16 = 12, so we shift the incoming value by
|
||||
that much to covert it to the desired Q3.28 format and do the normalization
|
||||
all in one go.
|
||||
our fixed point number. 28-16 = 12 + the sign bit = 13, so we shift the
|
||||
incoming value by that much to covert it to the desired Q3.28 format and
|
||||
do the normalization all in one go.
|
||||
*/
|
||||
return (fix3_28_t)a << 12;
|
||||
return (fix3_28_t)a << 13;
|
||||
}
|
||||
|
||||
/// @brief Convert fixed point samples into signed integer. Used to convert
|
||||
/// calculated sample to one that the DAC can understand.
|
||||
/// @param a
|
||||
/// @return Signed 16-bit integer.
|
||||
static inline int16_t norm_fix3_28_to_s16sample(fix3_28_t a) {
|
||||
static inline int32_t norm_fix3_28_to_s16sample(fix3_28_t a) {
|
||||
// Handle rounding up front, adding one can cause an overflow/underflow
|
||||
|
||||
// It's not clear exactly how this works, so we'll disable it for now.
|
||||
|
@ -56,22 +56,20 @@ static inline int16_t norm_fix3_28_to_s16sample(fix3_28_t a) {
|
|||
*/
|
||||
|
||||
// Saturate the value if an overflow has occurred
|
||||
uint32_t upper = (a >> 30);
|
||||
uint32_t upper = (a >> 29);
|
||||
if (a < 0) {
|
||||
if (~upper)
|
||||
{
|
||||
return SHRT_MIN;
|
||||
if (~upper) {
|
||||
return 0xff800000;
|
||||
}
|
||||
} else {
|
||||
if (upper)
|
||||
{
|
||||
return SHRT_MAX;
|
||||
if (upper) {
|
||||
return 0x00efffff;
|
||||
}
|
||||
}
|
||||
/* When we converted the USB audio sample to a fixed point number, we applied
|
||||
a normalization, or a gain of 1/65536. To convert it back, we can undo that
|
||||
by shifting it back by the same amount we shifted it in the first place. */
|
||||
return (a >> 12);
|
||||
by shifting it but we output 24bts, so the shift is reduced. */
|
||||
return (a >> 6);
|
||||
}
|
||||
|
||||
static inline fix3_28_t fix3_28_from_flt(float a) {
|
||||
|
|
|
@ -52,10 +52,12 @@ static uint8_t *userbuf;
|
|||
audio_state_config audio_state = {
|
||||
.freq = 48000,
|
||||
.de_emphasis_frequency = 0x1, // 48khz
|
||||
.interface = 0
|
||||
};
|
||||
|
||||
preprocessing_config preprocessing = {
|
||||
.preamp = fix16_one,
|
||||
.postEQGain = fix16_one,
|
||||
.reverse_stereo = false
|
||||
};
|
||||
|
||||
|
@ -124,6 +126,18 @@ static void __no_inline_not_in_flash_func(_as_audio_packet)(struct usb_endpoint
|
|||
int32_t *out = (int32_t *) userbuf;
|
||||
int samples = usb_buffer->data_len / 2;
|
||||
|
||||
// Make sure core 1 is ready for us.
|
||||
multicore_fifo_pop_blocking();
|
||||
|
||||
if (save_config()) {
|
||||
// Skip processing while we are writing to flash
|
||||
multicore_fifo_push_blocking(CORE0_ABORTED);
|
||||
// keep on truckin'
|
||||
usb_grow_transfer(ep->current_transfer, 1);
|
||||
usb_packet_done(ep);
|
||||
return;
|
||||
}
|
||||
|
||||
if (preprocessing.reverse_stereo) {
|
||||
for (int i = 0; i < samples; i+=2) {
|
||||
out[i] = in[i+1];
|
||||
|
@ -135,21 +149,22 @@ static void __no_inline_not_in_flash_func(_as_audio_packet)(struct usb_endpoint
|
|||
out[i] = in[i];
|
||||
}
|
||||
|
||||
// Make sure core 1 is ready for us.
|
||||
multicore_fifo_pop_blocking();
|
||||
multicore_fifo_push_blocking(CORE0_READY);
|
||||
multicore_fifo_push_blocking(samples);
|
||||
|
||||
for (int j = 0; j < filter_stages; j++) {
|
||||
// Left channel filter
|
||||
for (int i = 0; i < samples; i += 2) {
|
||||
fix3_28_t x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preprocessing.preamp);
|
||||
|
||||
// Left channel filter
|
||||
for (int i = 0; i < samples; i += 2) {
|
||||
fix3_28_t x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preprocessing.preamp);
|
||||
for (int j = 0; j < filter_stages; j++) {
|
||||
x_f16 = bqf_transform(x_f16, &bqf_filters_left[j],
|
||||
&bqf_filters_mem_left[j]);
|
||||
|
||||
out[i] = (int32_t) norm_fix3_28_to_s16sample(x_f16);
|
||||
}
|
||||
|
||||
/* Apply post-EQ gain. */
|
||||
x_f16 = fix16_mul( x_f16, preprocessing.postEQGain);
|
||||
|
||||
out[i] = (int32_t) norm_fix3_28_to_s16sample(x_f16);
|
||||
}
|
||||
|
||||
// Block until core 1 has finished transforming the data
|
||||
|
@ -182,20 +197,23 @@ void __no_inline_not_in_flash_func(core1_entry)() {
|
|||
|
||||
// Block until the userbuf is filled with data
|
||||
uint32_t ready = multicore_fifo_pop_blocking();
|
||||
while (ready != CORE0_READY)
|
||||
ready = multicore_fifo_pop_blocking();
|
||||
if (ready == CORE0_ABORTED) continue;
|
||||
|
||||
const uint32_t samples = multicore_fifo_pop_blocking();
|
||||
|
||||
for (int j = 0; j < filter_stages; j++) {
|
||||
for (int i = 1; i < samples; i += 2) {
|
||||
fix3_28_t x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preprocessing.preamp);
|
||||
|
||||
/* Right channel EQ. */
|
||||
for (int i = 1; i < samples; i += 2) {
|
||||
/* Apply EQ pre-filter gain to avoid clipping. */
|
||||
fix3_28_t x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preprocessing.preamp);
|
||||
/* Apply the biquad filters one by one. */
|
||||
for (int j = 0; j < filter_stages; j++) {
|
||||
x_f16 = bqf_transform(x_f16, &bqf_filters_right[j],
|
||||
&bqf_filters_mem_right[j]);
|
||||
|
||||
out[i] = (int16_t) norm_fix3_28_to_s16sample(x_f16);
|
||||
}
|
||||
/* Apply post-EQ gain. */
|
||||
x_f16 = fix16_mul( x_f16, preprocessing.postEQGain);
|
||||
|
||||
out[i] = (int32_t) norm_fix3_28_to_s16sample(x_f16);
|
||||
}
|
||||
|
||||
// Signal to core 0 that the data has all been transformed
|
||||
|
@ -273,9 +291,9 @@ void setup() {
|
|||
// Same here, pal. Hands off.
|
||||
sleep_ms(100);
|
||||
|
||||
// Set data format to 16 bit right justified, MSB first
|
||||
// Set data format to 24 bit right justified, MSB first
|
||||
buf[0] = 67; // register addr
|
||||
buf[1] = 0x03; // data
|
||||
buf[1] = 0x02; // data
|
||||
i2c_write_blocking(i2c0, PCM_I2C_ADDR, buf, 2, false);
|
||||
|
||||
i2s_write_obj.sck_pin = PCM3060_DAC_SCK_PIN;
|
||||
|
@ -752,6 +770,7 @@ static const struct usb_transfer_type _audio_cmd_transfer_type = {
|
|||
|
||||
static bool as_set_alternate(struct usb_interface *interface, uint alt) {
|
||||
assert(interface == &as_op_interface);
|
||||
audio_state.interface = alt;
|
||||
switch (alt) {
|
||||
case 0: power_down_dac(); return true;
|
||||
case 1: power_up_dac(); return true;
|
||||
|
@ -960,7 +979,7 @@ void power_down_dac() {
|
|||
i2c_write_blocking(i2c0, PCM_I2C_ADDR, buf, 2, false);
|
||||
}
|
||||
|
||||
void power_up_dac() {
|
||||
void power_up_dac() {
|
||||
uint8_t buf[2];
|
||||
buf[0] = 64; // register addr
|
||||
buf[1] = 0xE0; // DAC normal mode
|
||||
|
|
|
@ -76,6 +76,7 @@ typedef struct _audio_state_config {
|
|||
int16_t _target_pcm3060_registers;
|
||||
};
|
||||
int16_t pcm3060_registers;
|
||||
int8_t interface;
|
||||
} audio_state_config;
|
||||
extern audio_state_config audio_state;
|
||||
|
||||
|
@ -110,6 +111,8 @@ typedef struct _audio_device_config {
|
|||
|
||||
typedef struct _preprocessing_config {
|
||||
fix3_28_t preamp;
|
||||
/// @brief Apply this gain after applying EQ, to set output volume without causing overflow in the EQ calculations.
|
||||
fix3_28_t postEQGain;
|
||||
int reverse_stereo;
|
||||
} preprocessing_config;
|
||||
|
||||
|
@ -147,6 +150,7 @@ static char *descriptor_strings[] = {
|
|||
#define SAMPLING_FREQ (CODEC_FREQ / 192)
|
||||
|
||||
#define CORE0_READY 19813219
|
||||
#define CORE0_ABORTED 91231891
|
||||
#define CORE1_READY 72965426
|
||||
|
||||
/*****************************************************************************
|
||||
|
|
|
@ -6,7 +6,6 @@ set(CMAKE_CXX_STANDARD 17)
|
|||
|
||||
add_executable(filter_test
|
||||
filter_test.c
|
||||
../code/fix16.c
|
||||
../code/bqf.c
|
||||
../code/configuration_manager.c
|
||||
)
|
||||
|
|
|
@ -17,7 +17,7 @@ Run `filter_test` to process the PCM samples. The `filter_test` program takes tw
|
|||
You can listen to the PCM files using ffplay (which is usually included with ffmpeg):
|
||||
|
||||
```
|
||||
ffplay -f s16le -ar 48000 -ac 2 output.pcm
|
||||
ffplay -f s24le -ar 48000 -ac 2 output.pcm
|
||||
```
|
||||
|
||||
If there are no obvious problems, go ahead and flash your firmware.
|
||||
|
|
|
@ -32,7 +32,7 @@ int main(int argc, char* argv[])
|
|||
// we dont need to store the whole input and output files in memory.
|
||||
int samples = input_size / 2;
|
||||
int16_t *in = (int16_t *) calloc(samples, sizeof(int16_t));
|
||||
int16_t *out = (int16_t *) calloc(samples, sizeof(int16_t));
|
||||
int32_t *out = (int32_t *) calloc(samples, sizeof(int32_t));
|
||||
|
||||
fread(in, samples, sizeof(int16_t), input);
|
||||
fclose(input);
|
||||
|
@ -54,31 +54,39 @@ int main(int argc, char* argv[])
|
|||
out[i] = in[i];
|
||||
}
|
||||
|
||||
for (int j = 0; j < filter_stages; j++)
|
||||
{
|
||||
for (int i = 0; i < samples; i ++)
|
||||
{
|
||||
// Left channel filter
|
||||
fix16_t x_f16 = fix16_from_s16sample((int16_t) out[i]);
|
||||
const fix3_28_t preamp = fix3_28_from_flt(0.92f);
|
||||
|
||||
for (int i = 0; i < samples; i ++)
|
||||
{
|
||||
// Left channel filter
|
||||
fix3_28_t x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preamp);
|
||||
|
||||
for (int j = 0; j < filter_stages; j++)
|
||||
{
|
||||
x_f16 = bqf_transform(x_f16, &bqf_filters_left[j],
|
||||
&bqf_filters_mem_left[j]);
|
||||
}
|
||||
|
||||
out[i] = (int32_t) fix16_to_s16sample(x_f16);
|
||||
out[i] = (int32_t) norm_fix3_28_to_s16sample(x_f16);
|
||||
|
||||
// Right channel filter
|
||||
i++;
|
||||
x_f16 = fix16_from_s16sample((int16_t) out[i]);
|
||||
// Right channel filter
|
||||
i++;
|
||||
x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preamp);
|
||||
|
||||
for (int j = 0; j < filter_stages; j++)
|
||||
{
|
||||
x_f16 = bqf_transform(x_f16, &bqf_filters_right[j],
|
||||
&bqf_filters_mem_right[j]);
|
||||
|
||||
out[i] = (int16_t) fix16_to_s16sample(x_f16);
|
||||
}
|
||||
|
||||
out[i] = (int32_t) norm_fix3_28_to_s16sample(x_f16);
|
||||
//printf("%08x\n", out[i]);
|
||||
}
|
||||
|
||||
// Write out the processed audio.
|
||||
fwrite(out, samples, sizeof(int16_t), output);
|
||||
for (int i=0; i<samples; i++) {
|
||||
fwrite(&out[i], 3, sizeof(int8_t), output);
|
||||
}
|
||||
fclose(output);
|
||||
|
||||
free(in);
|
||||
|
|
Loading…
Reference in New Issue