Run the DAC in 24bit mode. (#25)
* Run the DAC in 24bit mode. * Update comment. * Remove accidental paste * Fix distortion. * Shift up the samples into -1..1, not much different, but we get an extra bit of resolution at the low end.
This commit is contained in:
parent
1e6896f918
commit
41d4023961
|
@ -41,7 +41,7 @@ static const fix3_28_t fix16_zero = 0x00000000;
|
|||
|
||||
static inline fix3_28_t norm_fix3_28_from_s16sample(int16_t);
|
||||
|
||||
static inline int16_t norm_fix3_28_to_s16sample(fix3_28_t);
|
||||
static inline int32_t norm_fix3_28_to_s16sample(fix3_28_t);
|
||||
|
||||
static inline fix3_28_t fix3_28_from_flt(float);
|
||||
|
||||
|
|
|
@ -32,18 +32,18 @@ static inline fix3_28_t norm_fix3_28_from_s16sample(int16_t a) {
|
|||
/* So, we're using a Q3.28 fixed point system here, and we want the incoming
|
||||
audio signal to be represented as a number between -1 and 1. To do this,
|
||||
we need the 16-bit value to map to the 28-bit right-of-decimal field in
|
||||
our fixed point number. 28-16 = 12, so we shift the incoming value by
|
||||
that much to covert it to the desired Q3.28 format and do the normalization
|
||||
all in one go.
|
||||
our fixed point number. 28-16 = 12 + the sign bit = 13, so we shift the
|
||||
incoming value by that much to covert it to the desired Q3.28 format and
|
||||
do the normalization all in one go.
|
||||
*/
|
||||
return (fix3_28_t)a << 12;
|
||||
return (fix3_28_t)a << 13;
|
||||
}
|
||||
|
||||
/// @brief Convert fixed point samples into signed integer. Used to convert
|
||||
/// calculated sample to one that the DAC can understand.
|
||||
/// @param a
|
||||
/// @return Signed 16-bit integer.
|
||||
static inline int16_t norm_fix3_28_to_s16sample(fix3_28_t a) {
|
||||
static inline int32_t norm_fix3_28_to_s16sample(fix3_28_t a) {
|
||||
// Handle rounding up front, adding one can cause an overflow/underflow
|
||||
|
||||
// It's not clear exactly how this works, so we'll disable it for now.
|
||||
|
@ -56,22 +56,20 @@ static inline int16_t norm_fix3_28_to_s16sample(fix3_28_t a) {
|
|||
*/
|
||||
|
||||
// Saturate the value if an overflow has occurred
|
||||
uint32_t upper = (a >> 30);
|
||||
uint32_t upper = (a >> 29);
|
||||
if (a < 0) {
|
||||
if (~upper)
|
||||
{
|
||||
return SHRT_MIN;
|
||||
if (~upper) {
|
||||
return 0xff800000;
|
||||
}
|
||||
} else {
|
||||
if (upper)
|
||||
{
|
||||
return SHRT_MAX;
|
||||
if (upper) {
|
||||
return 0x00efffff;
|
||||
}
|
||||
}
|
||||
/* When we converted the USB audio sample to a fixed point number, we applied
|
||||
a normalization, or a gain of 1/65536. To convert it back, we can undo that
|
||||
by shifting it back by the same amount we shifted it in the first place. */
|
||||
return (a >> 12);
|
||||
by shifting it but we output 24bts, so the shift is reduced. */
|
||||
return (a >> 6);
|
||||
}
|
||||
|
||||
static inline fix3_28_t fix3_28_from_flt(float a) {
|
||||
|
|
|
@ -140,16 +140,15 @@ static void __no_inline_not_in_flash_func(_as_audio_packet)(struct usb_endpoint
|
|||
multicore_fifo_push_blocking(CORE0_READY);
|
||||
multicore_fifo_push_blocking(samples);
|
||||
|
||||
for (int j = 0; j < filter_stages; j++) {
|
||||
// Left channel filter
|
||||
for (int i = 0; i < samples; i += 2) {
|
||||
fix3_28_t x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preprocessing.preamp);
|
||||
|
||||
// Left channel filter
|
||||
for (int i = 0; i < samples; i += 2) {
|
||||
fix3_28_t x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preprocessing.preamp);
|
||||
for (int j = 0; j < filter_stages; j++) {
|
||||
x_f16 = bqf_transform(x_f16, &bqf_filters_left[j],
|
||||
&bqf_filters_mem_left[j]);
|
||||
|
||||
out[i] = (int32_t) norm_fix3_28_to_s16sample(x_f16);
|
||||
}
|
||||
out[i] = (int32_t) norm_fix3_28_to_s16sample(x_f16);
|
||||
}
|
||||
|
||||
// Block until core 1 has finished transforming the data
|
||||
|
@ -187,15 +186,13 @@ void __no_inline_not_in_flash_func(core1_entry)() {
|
|||
|
||||
const uint32_t samples = multicore_fifo_pop_blocking();
|
||||
|
||||
for (int j = 0; j < filter_stages; j++) {
|
||||
for (int i = 1; i < samples; i += 2) {
|
||||
fix3_28_t x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preprocessing.preamp);
|
||||
|
||||
for (int i = 1; i < samples; i += 2) {
|
||||
fix3_28_t x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preprocessing.preamp);
|
||||
for (int j = 0; j < filter_stages; j++) {
|
||||
x_f16 = bqf_transform(x_f16, &bqf_filters_right[j],
|
||||
&bqf_filters_mem_right[j]);
|
||||
|
||||
out[i] = (int16_t) norm_fix3_28_to_s16sample(x_f16);
|
||||
}
|
||||
out[i] = (int32_t) norm_fix3_28_to_s16sample(x_f16);
|
||||
}
|
||||
|
||||
// Signal to core 0 that the data has all been transformed
|
||||
|
@ -273,9 +270,9 @@ void setup() {
|
|||
// Same here, pal. Hands off.
|
||||
sleep_ms(100);
|
||||
|
||||
// Set data format to 16 bit right justified, MSB first
|
||||
// Set data format to 24 bit right justified, MSB first
|
||||
buf[0] = 67; // register addr
|
||||
buf[1] = 0x03; // data
|
||||
buf[1] = 0x02; // data
|
||||
i2c_write_blocking(i2c0, PCM_I2C_ADDR, buf, 2, false);
|
||||
|
||||
i2s_write_obj.sck_pin = PCM3060_DAC_SCK_PIN;
|
||||
|
|
|
@ -6,7 +6,6 @@ set(CMAKE_CXX_STANDARD 17)
|
|||
|
||||
add_executable(filter_test
|
||||
filter_test.c
|
||||
../code/fix16.c
|
||||
../code/bqf.c
|
||||
../code/configuration_manager.c
|
||||
)
|
||||
|
|
|
@ -17,7 +17,7 @@ Run `filter_test` to process the PCM samples. The `filter_test` program takes tw
|
|||
You can listen to the PCM files using ffplay (which is usually included with ffmpeg):
|
||||
|
||||
```
|
||||
ffplay -f s16le -ar 48000 -ac 2 output.pcm
|
||||
ffplay -f s24le -ar 48000 -ac 2 output.pcm
|
||||
```
|
||||
|
||||
If there are no obvious problems, go ahead and flash your firmware.
|
||||
|
|
|
@ -32,7 +32,7 @@ int main(int argc, char* argv[])
|
|||
// we dont need to store the whole input and output files in memory.
|
||||
int samples = input_size / 2;
|
||||
int16_t *in = (int16_t *) calloc(samples, sizeof(int16_t));
|
||||
int16_t *out = (int16_t *) calloc(samples, sizeof(int16_t));
|
||||
int32_t *out = (int32_t *) calloc(samples, sizeof(int32_t));
|
||||
|
||||
fread(in, samples, sizeof(int16_t), input);
|
||||
fclose(input);
|
||||
|
@ -54,31 +54,39 @@ int main(int argc, char* argv[])
|
|||
out[i] = in[i];
|
||||
}
|
||||
|
||||
for (int j = 0; j < filter_stages; j++)
|
||||
{
|
||||
for (int i = 0; i < samples; i ++)
|
||||
{
|
||||
// Left channel filter
|
||||
fix16_t x_f16 = fix16_from_s16sample((int16_t) out[i]);
|
||||
const fix3_28_t preamp = fix3_28_from_flt(0.92f);
|
||||
|
||||
for (int i = 0; i < samples; i ++)
|
||||
{
|
||||
// Left channel filter
|
||||
fix3_28_t x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preamp);
|
||||
|
||||
for (int j = 0; j < filter_stages; j++)
|
||||
{
|
||||
x_f16 = bqf_transform(x_f16, &bqf_filters_left[j],
|
||||
&bqf_filters_mem_left[j]);
|
||||
}
|
||||
|
||||
out[i] = (int32_t) fix16_to_s16sample(x_f16);
|
||||
out[i] = (int32_t) norm_fix3_28_to_s16sample(x_f16);
|
||||
|
||||
// Right channel filter
|
||||
i++;
|
||||
x_f16 = fix16_from_s16sample((int16_t) out[i]);
|
||||
// Right channel filter
|
||||
i++;
|
||||
x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preamp);
|
||||
|
||||
for (int j = 0; j < filter_stages; j++)
|
||||
{
|
||||
x_f16 = bqf_transform(x_f16, &bqf_filters_right[j],
|
||||
&bqf_filters_mem_right[j]);
|
||||
|
||||
out[i] = (int16_t) fix16_to_s16sample(x_f16);
|
||||
}
|
||||
|
||||
out[i] = (int32_t) norm_fix3_28_to_s16sample(x_f16);
|
||||
//printf("%08x\n", out[i]);
|
||||
}
|
||||
|
||||
// Write out the processed audio.
|
||||
fwrite(out, samples, sizeof(int16_t), output);
|
||||
for (int i=0; i<samples; i++) {
|
||||
fwrite(&out[i], 3, sizeof(int8_t), output);
|
||||
}
|
||||
fclose(output);
|
||||
|
||||
free(in);
|
||||
|
|
Loading…
Reference in New Issue