Enable oratory's 15 band EQ (#23)
* Attempt at optimizing so the new filtering runs better. * Additional improvements. * Further optimisations. * Seems to work OK with 10 filters. Just noise with 11. * Increase config buffer size, and make the bqf_transform function inline * Remove extra loop and process input evently across both cores. * Enable 15 band EQ. * Shift some load of core1 * Revert buffer size change * Mark USB transfer as done sooner. * Fast multiply. * Fix build failure. * Rollback changes we dont need. * Fix save config to flash * Increase filter stages to 20. We cant quite run that many though. * Replace a few doubles with floats. According to the raspberry-pi-pico-c-sdk manual, doubles are around 3 times slower than floats.
This commit is contained in:
parent
fd6cbf54d5
commit
1e6896f918
|
@ -14,7 +14,6 @@ add_executable(ploopy_headphones
|
|||
run.c
|
||||
ringbuf.c
|
||||
i2s.c
|
||||
fix16.c
|
||||
bqf.c
|
||||
configuration_manager.c
|
||||
)
|
||||
|
@ -63,6 +62,9 @@ target_compile_definitions(ploopy_headphones PRIVATE
|
|||
GIT_HASH="${GIT_HASH}"
|
||||
|
||||
PICO_XOSC_STARTUP_DELAY_MULTIPLIER=64
|
||||
|
||||
# Performance, avoid calls to ____wrap___aeabi_lmul_veneer when doing 64bit multiplies
|
||||
PICO_INT64_OPS_IN_RAM=1
|
||||
)
|
||||
|
||||
pico_enable_stdio_usb(ploopy_headphones 0)
|
||||
|
|
|
@ -467,21 +467,6 @@ void bqf_highshelf_config(double fs, double f0, double dBgain, double Q,
|
|||
coefficients->a2 = fix3_28_from_dbl(a2);
|
||||
}
|
||||
|
||||
fix3_28_t bqf_transform(fix3_28_t x, bqf_coeff_t *coefficients, bqf_mem_t *memory) {
|
||||
fix3_28_t y = fix16_mul(coefficients->b0, x) -
|
||||
fix16_mul(coefficients->a1, memory->y_1) +
|
||||
fix16_mul(coefficients->b1, memory->x_1) -
|
||||
fix16_mul(coefficients->a2, memory->y_2) +
|
||||
fix16_mul(coefficients->b2, memory->x_2);
|
||||
|
||||
memory->x_2 = memory->x_1;
|
||||
memory->x_1 = x;
|
||||
memory->y_2 = memory->y_1;
|
||||
memory->y_1 = y;
|
||||
|
||||
return y;
|
||||
}
|
||||
|
||||
void bqf_memreset(bqf_mem_t *memory) {
|
||||
memory->x_1 = fix16_zero;
|
||||
memory->x_2 = fix16_zero;
|
||||
|
|
|
@ -41,9 +41,9 @@ typedef struct _bqf_mem_t {
|
|||
fix3_28_t y_2;
|
||||
} bqf_mem_t;
|
||||
|
||||
// In reality we do not have enough CPU resource to run 8 filtering
|
||||
// stages without some optimisation.
|
||||
#define MAX_FILTER_STAGES 8
|
||||
// More filters should be possible, but the config structure
|
||||
// might grow beyond the current 512 byte size.
|
||||
#define MAX_FILTER_STAGES 20
|
||||
extern int filter_stages;
|
||||
|
||||
extern bqf_coeff_t bqf_filters_left[MAX_FILTER_STAGES];
|
||||
|
@ -65,7 +65,8 @@ void bqf_peaking_config(double, double, double, double, bqf_coeff_t *);
|
|||
void bqf_lowshelf_config(double, double, double, double, bqf_coeff_t *);
|
||||
void bqf_highshelf_config(double, double, double, double, bqf_coeff_t *);
|
||||
|
||||
fix3_28_t bqf_transform(fix3_28_t, bqf_coeff_t *, bqf_mem_t *);
|
||||
static inline fix3_28_t bqf_transform(fix3_28_t, bqf_coeff_t *, bqf_mem_t *);
|
||||
void bqf_memreset(bqf_mem_t *);
|
||||
|
||||
#include "bqf.inl"
|
||||
#endif
|
||||
|
|
|
@ -0,0 +1,36 @@
|
|||
/**
|
||||
* Copyright 2022 Colin Lam, Ploopy Corporation
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* SPECIAL THANKS TO:
|
||||
* Robert Bristow-Johnson, a.k.a. RBJ
|
||||
* for his exceptional work on biquad formulae as applied to digital
|
||||
* audio filtering, summarised in his pamphlet, "Audio EQ Cookbook".
|
||||
*/
|
||||
|
||||
static inline fix3_28_t bqf_transform(fix3_28_t x, bqf_coeff_t *coefficients, bqf_mem_t *memory) {
|
||||
fix3_28_t y = fix16_mul(coefficients->b0, x) -
|
||||
fix16_mul(coefficients->a1, memory->y_1) +
|
||||
fix16_mul(coefficients->b1, memory->x_1) -
|
||||
fix16_mul(coefficients->a2, memory->y_2) +
|
||||
fix16_mul(coefficients->b2, memory->x_2);
|
||||
|
||||
memory->x_2 = memory->x_1;
|
||||
memory->x_1 = x;
|
||||
memory->y_2 = memory->y_1;
|
||||
memory->y_1 = y;
|
||||
|
||||
return y;
|
||||
}
|
|
@ -52,16 +52,23 @@ static const default_configuration default_config = {
|
|||
.set_configuration = { SET_CONFIGURATION, sizeof(default_config) },
|
||||
.filters = {
|
||||
.filter = { FILTER_CONFIGURATION, sizeof(default_config.filters) },
|
||||
.f1 = { PEAKING, {0}, 40, -20, 1.4 },
|
||||
.f2 = { LOWSHELF, {0}, 105, 2.5, 0.7 },
|
||||
.f3 = { PEAKING, {0}, 450, 7, 1.8 },
|
||||
.f4 = { PEAKING, {0}, 2100, 8, 3.0 },
|
||||
.f5 = { PEAKING, {0}, 3500, -7.5, 2.9 },
|
||||
.f6 = { PEAKING, {0}, 5200, 5.5, 3.0 },
|
||||
.f7 = { PEAKING, {0}, 6400, -19, 4.0 },
|
||||
.f8 = { PEAKING, {0}, 9000, 3.0, 2.0 }
|
||||
.f1 = { PEAKING, {0}, 38.5, -21.0, 1.4 },
|
||||
.f2 = { PEAKING, {0}, 60, -6.7, 0.5 },
|
||||
.f3 = { LOWSHELF, {0}, 105, 5.5, 0.71 },
|
||||
.f4 = { PEAKING, {0}, 280, -3.5, 1.1 },
|
||||
.f5 = { PEAKING, {0}, 350, -1.6, 6.0 },
|
||||
.f6 = { PEAKING, {0}, 425, 7.8, 1.3 },
|
||||
.f7 = { PEAKING, {0}, 500, -2.0, 7.0 },
|
||||
.f8 = { PEAKING, {0}, 690, -5.5, 3.0 },
|
||||
.f9 = { PEAKING, {0}, 1000, -2.2, 5.0 },
|
||||
.f10 = { PEAKING, {0}, 1530, -4.0, 2.5 },
|
||||
.f11 = { PEAKING, {0}, 2250, 6.0, 2.0 },
|
||||
.f12 = { PEAKING, {0}, 3430, -12.2, 2.0 },
|
||||
.f13 = { PEAKING, {0}, 4800, 4.0, 2.0 },
|
||||
.f14 = { PEAKING, {0}, 6200, -15.0, 3.0 },
|
||||
.f15 = { HIGHSHELF, {0}, 12000, -6.0, 0.71 }
|
||||
},
|
||||
.preprocessing = { .header = { PREPROCESSING_CONFIGURATION, sizeof(default_config.preprocessing) }, -0.16f, true, {0} }
|
||||
.preprocessing = { .header = { PREPROCESSING_CONFIGURATION, sizeof(default_config.preprocessing) }, -0.08f, true, {0} }
|
||||
};
|
||||
|
||||
// Grab the last 4k page of flash for our configuration strutures.
|
||||
|
@ -74,7 +81,7 @@ const uint8_t *user_configuration = (const uint8_t *) (XIP_BASE + USER_CONFIGURA
|
|||
* should handle merging configurations where, for example, only a new
|
||||
* filter_configuration_tlv was received.
|
||||
*/
|
||||
#define CFG_BUFFER_SIZE 256
|
||||
#define CFG_BUFFER_SIZE 512
|
||||
static uint8_t working_configuration[2][CFG_BUFFER_SIZE];
|
||||
static uint8_t inactive_working_configuration = 0;
|
||||
static uint8_t result_buffer[CFG_BUFFER_SIZE] = { U16_TO_U8S_LE(NOK), U16_TO_U8S_LE(0) };
|
||||
|
@ -129,7 +136,7 @@ bool validate_filter_configuration(filter_configuration_tlv *filters)
|
|||
printf("Error! Not enough data left for filter6 (%d)\n", remaining);
|
||||
return false;
|
||||
}
|
||||
if (args->a0 == 0.0) {
|
||||
if (args->a0 == 0.0f) {
|
||||
printf("Error! The a0 co-efficient of an IIR filter must not be 0.\n");
|
||||
return false;
|
||||
}
|
||||
|
@ -182,7 +189,7 @@ void apply_filter_configuration(filter_configuration_tlv *filters) {
|
|||
uint32_t checksum = 0;
|
||||
for (int i = 0; i < sizeof(filter6) / 4; i++) checksum ^= ((uint32_t*) args)[i];
|
||||
if (checksum != bqf_filter_checksum[filter_stages]) {
|
||||
bqf_filters_left[filter_stages].a0 = fix3_28_from_dbl(1.0);
|
||||
bqf_filters_left[filter_stages].a0 = fix16_one;
|
||||
bqf_filters_left[filter_stages].a1 = fix3_28_from_dbl(args->a1/args->a0);
|
||||
bqf_filters_left[filter_stages].a2 = fix3_28_from_dbl(args->a2/args->a0);
|
||||
bqf_filters_left[filter_stages].b0 = fix3_28_from_dbl(args->b0/args->a0);
|
||||
|
@ -308,7 +315,7 @@ bool apply_configuration(tlv_header *config) {
|
|||
#ifndef TEST_TARGET
|
||||
case PREPROCESSING_CONFIGURATION: {
|
||||
preprocessing_configuration_tlv* preprocessing_config = (preprocessing_configuration_tlv*) tlv;
|
||||
preprocessing.preamp = fix3_28_from_dbl(1.0 + preprocessing_config->preamp);
|
||||
preprocessing.preamp = fix3_28_from_flt(1.0f + preprocessing_config->preamp);
|
||||
preprocessing.reverse_stereo = preprocessing_config->reverse_stereo;
|
||||
break;
|
||||
}
|
||||
|
@ -352,7 +359,7 @@ bool __no_inline_not_in_flash_func(save_configuration)() {
|
|||
|
||||
const size_t config_length = config->length - ((size_t)config->value - (size_t)config);
|
||||
// Write data to flash
|
||||
uint8_t flash_buffer[FLASH_PAGE_SIZE];
|
||||
uint8_t flash_buffer[CFG_BUFFER_SIZE];
|
||||
flash_header_tlv* flash_header = (flash_header_tlv*) flash_buffer;
|
||||
flash_header->header.type = FLASH_HEADER;
|
||||
flash_header->header.length = sizeof(flash_header_tlv) + config_length;
|
||||
|
@ -362,7 +369,7 @@ bool __no_inline_not_in_flash_func(save_configuration)() {
|
|||
|
||||
uint32_t ints = save_and_disable_interrupts();
|
||||
flash_range_erase(USER_CONFIGURATION_OFFSET, FLASH_SECTOR_SIZE);
|
||||
flash_range_program(USER_CONFIGURATION_OFFSET, flash_buffer, FLASH_PAGE_SIZE);
|
||||
flash_range_program(USER_CONFIGURATION_OFFSET, flash_buffer, CFG_BUFFER_SIZE);
|
||||
restore_interrupts(ints);
|
||||
|
||||
power_up_dac();
|
||||
|
|
|
@ -17,8 +17,8 @@
|
|||
#include <stdint.h>
|
||||
|
||||
#define FLASH_MAGIC 0x2E8AFEDD
|
||||
#define CONFIG_VERSION 2
|
||||
#define MINIMUM_CONFIG_VERSION 1
|
||||
#define CONFIG_VERSION 3
|
||||
#define MINIMUM_CONFIG_VERSION 3
|
||||
|
||||
enum structure_types {
|
||||
// Commands/Responses, these are container TLVs. The Value will be a set of TLV structures.
|
||||
|
@ -53,18 +53,20 @@ typedef struct __attribute__((__packed__)) _tlv_header {
|
|||
typedef struct __attribute__((__packed__)) _filter2 {
|
||||
uint8_t type;
|
||||
uint8_t reserved[3];
|
||||
double f0;
|
||||
double Q;
|
||||
float f0;
|
||||
float Q;
|
||||
} filter2;
|
||||
|
||||
typedef struct __attribute__((__packed__)) _filter3 {
|
||||
uint8_t type;
|
||||
uint8_t reserved[3];
|
||||
double f0;
|
||||
double db_gain;
|
||||
double Q;
|
||||
float f0;
|
||||
float db_gain;
|
||||
float Q;
|
||||
} filter3;
|
||||
|
||||
// WARNING: We wont be able to support more than 8 of these filters
|
||||
// due to the config structure size.
|
||||
typedef struct __attribute__((__packed__)) _filter6 {
|
||||
uint8_t type;
|
||||
uint8_t reserved[3];
|
||||
|
@ -98,7 +100,7 @@ typedef struct __attribute__((__packed__)) _flash_header_tlv {
|
|||
|
||||
typedef struct __attribute__((__packed__)) _preprocessing_configuration_tlv {
|
||||
tlv_header header;
|
||||
double preamp;
|
||||
float preamp;
|
||||
uint8_t reverse_stereo;
|
||||
uint8_t reserved[3];
|
||||
} preprocessing_configuration_tlv;
|
||||
|
@ -137,6 +139,13 @@ typedef struct __attribute__((__packed__)) _default_configuration {
|
|||
filter3 f6;
|
||||
filter3 f7;
|
||||
filter3 f8;
|
||||
filter3 f9;
|
||||
filter3 f10;
|
||||
filter3 f11;
|
||||
filter3 f12;
|
||||
filter3 f13;
|
||||
filter3 f14;
|
||||
filter3 f15;
|
||||
} filters;
|
||||
preprocessing_configuration_tlv preprocessing;
|
||||
} default_configuration;
|
||||
|
|
|
@ -25,13 +25,6 @@
|
|||
#include <stdbool.h>
|
||||
#include <inttypes.h>
|
||||
|
||||
// During development, it can be useful to run with real double values for reference.
|
||||
//#define USE_DOUBLE
|
||||
#ifdef USE_DOUBLE
|
||||
typedef double fix16_t;
|
||||
static const fix16_t fix16_zero = 0;
|
||||
static const fix16_t fix16_one = 1;
|
||||
#else
|
||||
|
||||
/// @brief Fixed point math type, in format Q3.28. One sign bit, 3 bits for left-of-decimal
|
||||
///and 28 for right-of-decimal. This arrangment works because we normalize the incoming USB
|
||||
|
@ -46,15 +39,15 @@ static const fix3_28_t fix16_one = 0x10000000;
|
|||
/// @brief Represents zero in fixed point world.
|
||||
static const fix3_28_t fix16_zero = 0x00000000;
|
||||
|
||||
#endif
|
||||
static inline fix3_28_t norm_fix3_28_from_s16sample(int16_t);
|
||||
|
||||
static inline int16_t norm_fix3_28_to_s16sample(fix3_28_t);
|
||||
|
||||
fix3_28_t norm_fix3_28_from_s16sample(int16_t);
|
||||
static inline fix3_28_t fix3_28_from_flt(float);
|
||||
|
||||
int16_t norm_fix3_28_to_s16sample(fix3_28_t);
|
||||
static inline fix3_28_t fix3_28_from_dbl(double);
|
||||
|
||||
fix3_28_t fix3_28_from_dbl(double);
|
||||
|
||||
fix3_28_t fix16_mul(fix3_28_t, fix3_28_t);
|
||||
static inline fix3_28_t fix16_mul(fix3_28_t, fix3_28_t);
|
||||
|
||||
#include "fix16.inl"
|
||||
#endif
|
|
@ -25,46 +25,10 @@
|
|||
#include <limits.h>
|
||||
#include "fix16.h"
|
||||
|
||||
#ifdef USE_DOUBLE
|
||||
fix16_t fix16_from_s16sample(int16_t a) {
|
||||
return a;
|
||||
}
|
||||
|
||||
int16_t fix16_to_s16sample(fix16_t a) {
|
||||
// Handle rounding up front, adding one can cause an overflow/underflow
|
||||
if (a < 0) {
|
||||
a -= 0.5;
|
||||
} else {
|
||||
a += 0.5;
|
||||
}
|
||||
|
||||
// Saturate the value if an overflow has occurred
|
||||
if (a < SHRT_MIN) {
|
||||
return SHRT_MIN;
|
||||
}
|
||||
if (a < SHRT_MAX) {
|
||||
return SHRT_MAX;
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
fix16_t fix16_from_dbl(double a) {
|
||||
return a;
|
||||
}
|
||||
|
||||
double fix16_to_dbl(fix16_t a) {
|
||||
return a;
|
||||
}
|
||||
|
||||
fix16_t fix16_mul(fix16_t inArg0, fix16_t inArg1) {
|
||||
return inArg0 * inArg1;
|
||||
}
|
||||
#else
|
||||
|
||||
/// @brief Produces a fixed point number from a 16-bit signed integer, normalized to ]-1,1[.
|
||||
/// @param a Signed 16-bit integer.
|
||||
/// @return A fixed point number in Q3.28 format, with input normalized to ]-1,1[.
|
||||
fix3_28_t norm_fix3_28_from_s16sample(int16_t a) {
|
||||
static inline fix3_28_t norm_fix3_28_from_s16sample(int16_t a) {
|
||||
/* So, we're using a Q3.28 fixed point system here, and we want the incoming
|
||||
audio signal to be represented as a number between -1 and 1. To do this,
|
||||
we need the 16-bit value to map to the 28-bit right-of-decimal field in
|
||||
|
@ -79,7 +43,7 @@ fix3_28_t norm_fix3_28_from_s16sample(int16_t a) {
|
|||
/// calculated sample to one that the DAC can understand.
|
||||
/// @param a
|
||||
/// @return Signed 16-bit integer.
|
||||
int16_t norm_fix3_28_to_s16sample(fix3_28_t a) {
|
||||
static inline int16_t norm_fix3_28_to_s16sample(fix3_28_t a) {
|
||||
// Handle rounding up front, adding one can cause an overflow/underflow
|
||||
|
||||
// It's not clear exactly how this works, so we'll disable it for now.
|
||||
|
@ -110,8 +74,13 @@ int16_t norm_fix3_28_to_s16sample(fix3_28_t a) {
|
|||
return (a >> 12);
|
||||
}
|
||||
|
||||
static inline fix3_28_t fix3_28_from_flt(float a) {
|
||||
float temp = a * fix16_one;
|
||||
temp += ((temp >= 0) ? 0.5f : -0.5f);
|
||||
return (fix3_28_t)temp;
|
||||
}
|
||||
|
||||
fix3_28_t fix3_28_from_dbl(double a) {
|
||||
static inline fix3_28_t fix3_28_from_dbl(double a) {
|
||||
double temp = a * fix16_one;
|
||||
temp += (double)((temp >= 0) ? 0.5f : -0.5f);
|
||||
return (fix3_28_t)temp;
|
||||
|
@ -121,27 +90,22 @@ fix3_28_t fix3_28_from_dbl(double a) {
|
|||
/// @param inArg0 Q3.28 format fixed point number.
|
||||
/// @param inArg1 Q3.28 format fixed point number.
|
||||
/// @return A Q3.28 fixed point number that represents the truncated result of inArg0 x inArg1.
|
||||
fix3_28_t fix16_mul(fix3_28_t inArg0, fix3_28_t inArg1) {
|
||||
const int64_t product = (int64_t)inArg0 * inArg1;
|
||||
static inline fix3_28_t fix16_mul(fix3_28_t inArg0, fix3_28_t inArg1) {
|
||||
int32_t A = (inArg0 >> 14), C = (inArg1 >> 14);
|
||||
uint32_t B = (inArg0 & 0x3FFF), D = (inArg1 & 0x3FFF);
|
||||
int32_t AC = A*C;
|
||||
int32_t AD_CB = A*D + C*B;
|
||||
int32_t product_hi = AC + (AD_CB >> 14);
|
||||
|
||||
/* Since we're expecting 2 Q3.28 numbers, the multiplication result should be a Q7.56 number.
|
||||
To bring this number back to the right order of magnitude, we need to shift
|
||||
it to the right by 28. */
|
||||
fix3_28_t result = product >> 28;
|
||||
#if HANDLE_CARRY
|
||||
// Handle carry from lower bits to upper part of result.
|
||||
uint32_t BD = B*D;
|
||||
uint32_t ad_cb_temp = AD_CB << 14;
|
||||
uint32_t product_lo = BD + ad_cb_temp;
|
||||
|
||||
// Handle rounding where we are choppping off low order bits
|
||||
// Disabled for now, too much load. We get crackling when adjusting
|
||||
// the volume.
|
||||
#if 0
|
||||
if (product & 0x4000) {
|
||||
if (result >= 0) {
|
||||
result++;
|
||||
}
|
||||
else {
|
||||
result--;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
return result;
|
||||
}
|
||||
#endif
|
||||
if (product_lo < BD)
|
||||
product_hi++;
|
||||
#endif
|
||||
|
||||
return product_hi;
|
||||
}
|
|
@ -70,4 +70,4 @@ void feed_dma(i2s_obj_t *, uint8_t *);
|
|||
|
||||
uint32_t copy_userbuf_to_ringbuf(i2s_obj_t *, const uint8_t *, uint);
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
|
|
@ -78,4 +78,4 @@ size_t ringbuf_available_data(ring_buf_t *rbuf) {
|
|||
|
||||
size_t ringbuf_available_space(ring_buf_t *rbuf) {
|
||||
return rbuf->size - ringbuf_available_data(rbuf) - 1;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -42,4 +42,4 @@ bool ringbuf_is_full(ring_buf_t *);
|
|||
size_t ringbuf_available_data(ring_buf_t *);
|
||||
size_t ringbuf_available_space(ring_buf_t *);
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
|
|
@ -118,7 +118,7 @@ static void update_volume()
|
|||
// PCM data into I2S data that gets shipped out to the PCM3060. It really
|
||||
// belongs with the other USB-related code due to its utter indecipherability,
|
||||
// but it's placed here to emphasize its importance.
|
||||
static void _as_audio_packet(struct usb_endpoint *ep) {
|
||||
static void __no_inline_not_in_flash_func(_as_audio_packet)(struct usb_endpoint *ep) {
|
||||
struct usb_buffer *usb_buffer = usb_current_out_packet_buffer(ep);
|
||||
int16_t *in = (int16_t *) usb_buffer->data;
|
||||
int32_t *out = (int32_t *) userbuf;
|
||||
|
@ -156,15 +156,22 @@ static void _as_audio_packet(struct usb_endpoint *ep) {
|
|||
uint32_t ready = multicore_fifo_pop_blocking();
|
||||
multicore_fifo_push_blocking(CORE0_READY);
|
||||
|
||||
// Update the volume if required. We do this from core1 as
|
||||
// core0 is more heavily loaded, doing this from core0 can
|
||||
// lead to audio crackling.
|
||||
update_volume();
|
||||
|
||||
// Update filters if required
|
||||
apply_config_changes();
|
||||
|
||||
// keep on truckin'
|
||||
usb_grow_transfer(ep->current_transfer, 1);
|
||||
usb_packet_done(ep);
|
||||
}
|
||||
|
||||
void core1_entry() {
|
||||
void __no_inline_not_in_flash_func(core1_entry)() {
|
||||
uint8_t *userbuf = (uint8_t *) multicore_fifo_pop_blocking();
|
||||
int32_t *out = (int32_t *) userbuf;
|
||||
int limit_counter = 100;
|
||||
|
||||
// Signal that the thread has started
|
||||
multicore_fifo_push_blocking(CORE1_READY);
|
||||
|
@ -191,19 +198,6 @@ void core1_entry() {
|
|||
}
|
||||
}
|
||||
|
||||
// Update the volume and filter configs if required. We do this from
|
||||
// core1 as core0 is more heavily loaded, doing this from core0 can
|
||||
// lead to audio crackling.
|
||||
// Use of a counter reduces the amount of crackling when changing
|
||||
// volume.
|
||||
if (limit_counter != 0)
|
||||
limit_counter--;
|
||||
else {
|
||||
limit_counter = 100;
|
||||
update_volume();
|
||||
apply_config_changes();
|
||||
}
|
||||
|
||||
// Signal to core 0 that the data has all been transformed
|
||||
multicore_fifo_push_blocking(CORE1_READY);
|
||||
|
||||
|
@ -253,7 +247,7 @@ void setup() {
|
|||
// The PCM3060 supports standard mode (100kbps) or fast mode (400kbps)
|
||||
// we run in fast mode so we dont block the core for too long while
|
||||
// updating the volume.
|
||||
i2c_init(i2c0, 100000);
|
||||
i2c_init(i2c0, 400000);
|
||||
gpio_set_function(PCM3060_SDA_PIN, GPIO_FUNC_I2C);
|
||||
gpio_set_function(PCM3060_SCL_PIN, GPIO_FUNC_I2C);
|
||||
gpio_pull_up(PCM3060_SDA_PIN);
|
||||
|
@ -297,6 +291,7 @@ void setup() {
|
|||
* IF YOU DO, YOU COULD BLOW UP YOUR HARDWARE! *
|
||||
* YOU WERE WARNED!!!!!!!!!!!!!!!! *
|
||||
****************************************************************************/
|
||||
// TODO: roundf will be much faster than round, but it might mess with timings
|
||||
void configure_neg_switch_pwm() {
|
||||
gpio_set_function(NEG_SWITCH_PWM_PIN, GPIO_FUNC_PWM);
|
||||
uint slice_num = pwm_gpio_to_slice_num(NEG_SWITCH_PWM_PIN);
|
||||
|
|
Loading…
Reference in New Issue