camera-trng/TECHNICAL.md

297 lines
9.7 KiB
Markdown

# Camera TRNG
> **[Read the Research & Science Behind This](RESEARCH.md)** — A deep dive into the physics, academic literature, and the LavaRnd approach.
A true random number generator that extracts entropy from camera sensor thermal noise, following the LavaRnd methodology.
## Setup Requirements
**Important**: Cover the camera lens for optimal operation.
1. **Cover the lens**: Use the lens cap, opaque tape, or place the camera in a light-proof enclosure
2. **Verify darkness**: The camera should capture pure black frames
3. **Run the service**: Gain and brightness are automatically maximized
This approach (pioneered by the LavaRnd project) isolates pure thermal noise from the sensor, eliminating any scene-correlated data and providing a simpler security model.
## How It Works
With the lens covered, camera sensors produce noise from thermal electron activity and dark current. This service:
1. Opens the camera and maximizes gain/brightness settings
2. Captures frames of pure sensor noise (no light = no scene data)
3. Extracts the 2 LSBs from each pixel (highest entropy density)
4. Hashes the LSBs with SHA-256 to condition the output
5. Mixes in timing entropy for additional randomness
## Build
```bash
cargo build --release
```
## Run
```bash
./target/release/camera-trng
# Or set a custom port
PORT=9000 ./target/release/camera-trng
Use the camera at **max resolution** (and highest frame rate):
```bash
CAMERA_MAX_RESOLUTION=1 cargo run
```
**macOS — camera in use ("Lock Rejected")?** Run once to release the webcam, then start the server:
```bash
./scripts/release-camera.sh # may prompt for sudo password
cargo run
```
### Streaming random (multiple terminals)
To see a stream of random in the terminal and verify each stream is unique:
- **One stream:** `./scripts/stream-random.sh 0` (infinite; Ctrl+C to stop)
- **Several streams in different terminals** (each gets different random; never the same):
- Terminal 1: `./scripts/stream-random.sh "Stream-1" 0`
- Terminal 2: `./scripts/stream-random.sh "Stream-2" 0`
- Terminal 3: `./scripts/stream-random.sh "Stream-3" 0`
- **Quick demo (3 streams, 5 lines each, verify no duplicates):** `./scripts/stream-demo.sh 5`
## Docker
Pull the pre-built image:
```bash
docker pull git.nixc.us/colin/camera-trng:latest
```
Run with camera access (Linux with V4L2):
```bash
docker run -d \
--name camera-trng \
--device /dev/video0:/dev/video0 \
-p 8787:8787 \
git.nixc.us/colin/camera-trng:latest
```
**Note**: Ensure the camera lens is covered before starting the container.
### Available Tags
| Tag | Description |
|-----|-------------|
| `latest` | Latest build from master branch |
| `<commit-sha>` | Specific commit (first 8 chars) |
| `<version>` | Semantic version tags (e.g., `v1.0.0`) |
## API
### GET /random
Returns random bytes from camera thermal noise.
**Query Parameters:**
- `bytes` - Number of bytes to return (default: 32, max: 1024)
- `hex` - Return as hex string instead of raw bytes (default: false)
**Examples:**
```bash
# Get 32 random bytes as hex
curl "http://localhost:8787/random?hex=true"
# Get 64 raw random bytes
curl "http://localhost:8787/random?bytes=64" -o random.bin
# Get 256 bytes as hex
curl "http://localhost:8787/random?bytes=256&hex=true"
```
### GET /health
Returns `ok` if the server is running.
## Rate Limiting
- Maximum 4 concurrent requests
- Maximum 1024 bytes per request
- Returns 429 Too Many Requests when overloaded
## Cross-Platform Support
Uses `nokhwa` for camera access, supporting:
- macOS (AVFoundation)
- Windows (Media Foundation)
- Linux (V4L2)
## Randomness Validation
A built-in test suite validates the statistical quality of generated random data.
### Quick Test
```bash
# Test against running server (fetches 1MB)
./scripts/test-randomness.py --server http://127.0.0.1:8787
# Test a file
./scripts/test-randomness.py /path/to/random.bin
# Test from stdin
curl -s http://127.0.0.1:8787/random?bytes=1048576 | ./scripts/test-randomness.py -
```
### Test Suite
The validation suite includes 8 statistical tests:
| Test | Description | Pass Criteria |
|------|-------------|---------------|
| Shannon Entropy | Information density | >7.9 bits/byte |
| Chi-Square | Distribution uniformity | 200-330 (df=255) |
| Arithmetic Mean | Average byte value | 126-129 |
| Monte Carlo Pi | Geometric randomness | <1% error |
| Serial Correlation | Sequential independence | \|r\| < 0.01 |
| Byte Coverage | Value distribution | 256/256 present |
| Bit Balance | Binary distribution | 49-51% ones |
| Longest Run | Pattern detection | <25 bits |
### Example Output
```
=======================================================
CAMERA QRNG RANDOMNESS VALIDATION
=======================================================
Sample size: 1,048,576 bytes (1.00 MB)
1. Shannon Entropy: 7.999796 bits/byte [PASS]
2. Chi-Square Test: 297.12 [PASS]
3. Arithmetic Mean: 127.5829 [PASS]
4. Monte Carlo Pi: 3.155151 [PASS]
5. Serial Correlation: 0.000235 [PASS]
6. Byte Coverage: 256/256 [PASS]
7. Bit Balance: 50.00% ones [PASS]
8. Longest Run (10KB): 19 bits [PASS]
RESULTS: 8/8 tests passed
VERDICT: EXCELLENT - All tests passed!
```
### External Test Suites
For more rigorous validation, the output also passes industry-standard test suites:
- **NIST SP 800-22**: 15 statistical tests (official NIST standard)
- **Dieharder**: 100+ statistical tests
- **TestU01**: Academic test library (BigCrush)
- **ENT**: Entropy analysis tool
```bash
# Using dieharder (if installed)
curl -s http://127.0.0.1:8787/random?bytes=10485760 | dieharder -a -g 200
# Using rngtest
curl -s http://127.0.0.1:8787/random?bytes=2500000 | rngtest
```
## CI/CD Pipeline
This project uses Woodpecker CI to automatically build, test, and deploy.
### Pipeline Overview
```
┌─────────────────────────────────────────────────────────────────┐
│ Woodpecker CI │
├─────────────────────────────────────────────────────────────────┤
│ │
│ On Push/PR to master: │
│ ┌─────────┐ │
│ │ test │──┬──> build-linux-x86_64 ──> binary artifact │
│ └─────────┘ │ │
│ ├──> build-linux-aarch64 ──> binary artifact │
│ │ │
│ └──> build-image ──┬──> trivy-image (scan) │
│ └──> sbom-image (SBOM) │
│ │
│ Parallel checks: cargo-audit, trivy-fs, clippy, fmt-check │
│ │
└─────────────────────────────────────────────────────────────────┘
```
### Build Artifacts
| Artifact | Architecture | Description |
|----------|--------------|-------------|
| `camera-trng-linux-x86_64` | x86_64 | Linux AMD64 binary |
| `camera-trng-linux-aarch64` | aarch64 | Linux ARM64 binary (best-effort) |
| Docker Image | linux/amd64 | Container image |
### Docker Image Registry
Images are pushed to: `git.nixc.us/colin/camera-trng`
- **On push to master**: Tags `latest` and `<commit-sha>`
- **On version tag**: Tags `<version>` and `latest`
### Required Secrets
Configure these secrets in Woodpecker:
| Secret | Description |
|--------|-------------|
| `REGISTRY_USER` | Username for git.nixc.us registry |
| `REGISTRY_PASSWORD` | Password/token for git.nixc.us registry |
| `DOCKER_REGISTRY_USER` | Docker Hub username (for base images) |
| `DOCKER_REGISTRY_PASSWORD` | Docker Hub password/token |
### Security Scanning
The pipeline includes:
- **cargo-audit**: Scans Rust dependencies for known vulnerabilities
- **trivy-fs**: Scans filesystem and Cargo.lock for vulnerabilities
- **trivy-image**: Scans the built Docker image
- **SBOM generation**: Creates SPDX and CycloneDX SBOMs for dependencies
### Cross-Compilation Notes
**Linux x86_64**: Fully supported, built natively on CI runners.
**Linux aarch64**: Best-effort cross-compilation. May fail due to native camera library dependencies (libv4l). For production ARM64 builds, consider using native ARM64 runners.
**macOS/Windows**: Not built in CI due to native camera library requirements. Build locally:
```bash
# macOS
cargo build --release
# Windows (requires MSVC toolchain)
cargo build --release
```
### Local Docker Build
```bash
# Build locally
docker build -t camera-trng:local .
# Test locally (requires camera device with lens covered)
docker run --rm --device /dev/video0 -p 8787:8787 camera-trng:local
```
## Security Notes
This implementation follows the LavaRnd approach for thermal noise extraction:
- **Cover the lens**: Required for the intended security model
- **Gain maximized**: Software automatically configures camera for maximum noise amplification
- **No scene data**: With lens covered, there is no side-channel information leakage
- **SHA-256 conditioning**: Removes any bias and ensures uniform distribution
For high-security cryptographic applications, consider:
- Using dedicated hardware RNGs (HSMs)
- Mixing with system entropy (`/dev/urandom`)
- Verifying the camera is properly covered before deployment