tripwire-open-source/src/core/sha.cpp

384 lines
12 KiB
C++

//
// The developer of the original code and/or files is Tripwire, Inc.
// Portions created by Tripwire, Inc. are copyright (C) 2000 Tripwire,
// Inc. Tripwire is a registered trademark of Tripwire, Inc. All rights
// reserved.
//
// This program is free software. The contents of this file are subject
// to the terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2 of the License, or (at your
// option) any later version. You may redistribute it and/or modify it
// only in compliance with the GNU General Public License.
//
// This program is distributed in the hope that it will be useful.
// However, this program is distributed AS-IS WITHOUT ANY
// WARRANTY; INCLUDING THE IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS
// FOR A PARTICULAR PURPOSE. Please see the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
//
// Nothing in the GNU General Public License or any other license to use
// the code or files shall permit you to use Tripwire's trademarks,
// service marks, or other intellectual property without Tripwire's
// prior written consent.
//
// If you have any questions, please contact Tripwire, Inc. at either
// info@tripwire.org or www.tripwire.org.
//
//#ifndef lint
/*static char rcsid[] = "$Tripwire: sha.cpp,v 1.1 2000/10/28 01:15:20 itripn Exp $";*/
//#endif
/*
* sha.c
*
* signature function hook for SHA.
*
* Gene Kim
* Purdue University
* August 10, 1993
*/
/* --------------------------------- SHS.H ------------------------------- */
/* NIST proposed Secure Hash Standard.
Written 2 September 1992, Peter C. Gutmann.
This implementation placed in the public domain.
Comments to pgut1@cs.aukuni.ac.nz */
/* --------------------------------- SHS.C ------------------------------- */
/* NIST proposed Secure Hash Standard.
Written 2 September 1992, Peter C. Gutmann.
This implementation placed in the public domain.
Comments to pgut1@cs.aukuni.ac.nz */
#include "stdcore.h"
#include <stdio.h>
#include <sys/types.h>
#include <memory.h>
#include "sha.h"
/* The SHS f()-functions */
#define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) /* Rounds 0-19 */
#define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */
#define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) /* Rounds 40-59 */
#define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */
/* The SHS Mysterious Constants */
#define K1 0x5A827999L /* Rounds 0-19 */
#define K2 0x6ED9EBA1L /* Rounds 20-39 */
#define K3 0x8F1BBCDCL /* Rounds 40-59 */
#define K4 0xCA62C1D6L /* Rounds 60-79 */
/* SHS initial values */
#define h0init 0x67452301L
#define h1init 0xEFCDAB89L
#define h2init 0x98BADCFEL
#define h3init 0x10325476L
#define h4init 0xC3D2E1F0L
/* 32-bit rotate - kludged with shifts */
#define S(n,X) ( ( X << n ) | ( X >> ( 32 - n ) ) )
/* The initial expanding function */
#ifdef NEW_SHA
#define expand(count) temp = W[ count - 3 ] ^ W[ count - 8 ] ^ W[ count - 14 ] ^ W[ count - 16 ];W[ count ] = S(1, temp)
#else
#define expand(count) W[ count ] = W[ count - 3 ] ^ W[ count - 8 ] ^ W[ count - 14 ] ^ W[ count - 16 ]
#endif
/* The four SHS sub-rounds */
#define subRound1(count) \
{ \
temp = S( 5, A ) + f1( B, C, D ) + E + W[ count ] + K1; \
E = D; \
D = C; \
C = S( 30, B ); \
B = A; \
A = temp; \
}
#define subRound2(count) \
{ \
temp = S( 5, A ) + f2( B, C, D ) + E + W[ count ] + K2; \
E = D; \
D = C; \
C = S( 30, B ); \
B = A; \
A = temp; \
}
#define subRound3(count) \
{ \
temp = S( 5, A ) + f3( B, C, D ) + E + W[ count ] + K3; \
E = D; \
D = C; \
C = S( 30, B ); \
B = A; \
A = temp; \
}
#define subRound4(count) \
{ \
temp = S( 5, A ) + f4( B, C, D ) + E + W[ count ] + K4; \
E = D; \
D = C; \
C = S( 30, B ); \
B = A; \
A = temp; \
}
/* The two buffers of 5 32-bit words */
uint32 h0, h1, h2, h3, h4;
uint32 A, B, C, D, E;
/* Initialize the SHS values */
void shsInit(SHS_INFO* shsInfo)
{
/* Set the h-vars to their initial values */
shsInfo->digest[ 0 ] = h0init;
shsInfo->digest[ 1 ] = h1init;
shsInfo->digest[ 2 ] = h2init;
shsInfo->digest[ 3 ] = h3init;
shsInfo->digest[ 4 ] = h4init;
/* Initialise bit count */
shsInfo->countLo = shsInfo->countHi = 0L;
}
/* Perform the SHS transformation. Note that this code, like MD5, seems to
break some optimizing compilers - it may be necessary to split it into
sections, eg based on the four subrounds */
void shsTransform(SHS_INFO *shsInfo)
{
uint32 W[ 80 ], temp;
int i;
/* Step A. Copy the data buffer into the local work buffer */
for( i = 0; i < 16; i++ )
W[ i ] = shsInfo->data[ i ];
/* Step B. Expand the 16 words into 64 temporary data words */
expand( 16 ); expand( 17 ); expand( 18 ); expand( 19 ); expand( 20 );
expand( 21 ); expand( 22 ); expand( 23 ); expand( 24 ); expand( 25 );
expand( 26 ); expand( 27 ); expand( 28 ); expand( 29 ); expand( 30 );
expand( 31 ); expand( 32 ); expand( 33 ); expand( 34 ); expand( 35 );
expand( 36 ); expand( 37 ); expand( 38 ); expand( 39 ); expand( 40 );
expand( 41 ); expand( 42 ); expand( 43 ); expand( 44 ); expand( 45 );
expand( 46 ); expand( 47 ); expand( 48 ); expand( 49 ); expand( 50 );
expand( 51 ); expand( 52 ); expand( 53 ); expand( 54 ); expand( 55 );
expand( 56 ); expand( 57 ); expand( 58 ); expand( 59 ); expand( 60 );
expand( 61 ); expand( 62 ); expand( 63 ); expand( 64 ); expand( 65 );
expand( 66 ); expand( 67 ); expand( 68 ); expand( 69 ); expand( 70 );
expand( 71 ); expand( 72 ); expand( 73 ); expand( 74 ); expand( 75 );
expand( 76 ); expand( 77 ); expand( 78 ); expand( 79 );
/* Step C. Set up first buffer */
A = shsInfo->digest[ 0 ];
B = shsInfo->digest[ 1 ];
C = shsInfo->digest[ 2 ];
D = shsInfo->digest[ 3 ];
E = shsInfo->digest[ 4 ];
/* Step D. Serious mangling, divided into four sub-rounds */
subRound1( 0 ); subRound1( 1 ); subRound1( 2 ); subRound1( 3 );
subRound1( 4 ); subRound1( 5 ); subRound1( 6 ); subRound1( 7 );
subRound1( 8 ); subRound1( 9 ); subRound1( 10 ); subRound1( 11 );
subRound1( 12 ); subRound1( 13 ); subRound1( 14 ); subRound1( 15 );
subRound1( 16 ); subRound1( 17 ); subRound1( 18 ); subRound1( 19 );
subRound2( 20 ); subRound2( 21 ); subRound2( 22 ); subRound2( 23 );
subRound2( 24 ); subRound2( 25 ); subRound2( 26 ); subRound2( 27 );
subRound2( 28 ); subRound2( 29 ); subRound2( 30 ); subRound2( 31 );
subRound2( 32 ); subRound2( 33 ); subRound2( 34 ); subRound2( 35 );
subRound2( 36 ); subRound2( 37 ); subRound2( 38 ); subRound2( 39 );
subRound3( 40 ); subRound3( 41 ); subRound3( 42 ); subRound3( 43 );
subRound3( 44 ); subRound3( 45 ); subRound3( 46 ); subRound3( 47 );
subRound3( 48 ); subRound3( 49 ); subRound3( 50 ); subRound3( 51 );
subRound3( 52 ); subRound3( 53 ); subRound3( 54 ); subRound3( 55 );
subRound3( 56 ); subRound3( 57 ); subRound3( 58 ); subRound3( 59 );
subRound4( 60 ); subRound4( 61 ); subRound4( 62 ); subRound4( 63 );
subRound4( 64 ); subRound4( 65 ); subRound4( 66 ); subRound4( 67 );
subRound4( 68 ); subRound4( 69 ); subRound4( 70 ); subRound4( 71 );
subRound4( 72 ); subRound4( 73 ); subRound4( 74 ); subRound4( 75 );
subRound4( 76 ); subRound4( 77 ); subRound4( 78 ); subRound4( 79 );
/* Step E. Build message digest */
shsInfo->digest[ 0 ] += A;
shsInfo->digest[ 1 ] += B;
shsInfo->digest[ 2 ] += C;
shsInfo->digest[ 3 ] += D;
shsInfo->digest[ 4 ] += E;
}
#ifndef WORDS_BIGENDIAN
/* When run on a little-endian CPU we need to perform byte reversal on an
array of longwords. It is possible to make the code endianness-
independant by fiddling around with data at the byte level, but this
makes for very slow code, so we rely on the user to sort out endianness
at compile time */
static void byteReverse(uint32* buffer, int byteCount)
{
uint32 value;
int count;
byteCount /= sizeof( uint32 );
for( count = 0; count < byteCount; count++ )
{
value = ( buffer[ count ] << 16 ) | ( buffer[ count ] >> 16 );
buffer[ count ] = ( ( value & 0xFF00FF00L ) >> 8 ) | ( ( value & 0x00FF00FFL ) << 8 );
}
}
#endif /* #ifndef WORDS_BIGENDIAN */
/* Update SHS for a block of data. This code assumes that the buffer size
is a multiple of SHS_BLOCKSIZE bytes long, which makes the code a lot
more efficient since it does away with the need to handle partial blocks
between calls to shsUpdate() */
void shsUpdate(SHS_INFO* shsInfo, uint8* buffer, int count)
{
/* Update bitcount */
if( ( shsInfo->countLo + ( ( uint32 ) count << 3 ) ) < shsInfo->countLo )
shsInfo->countHi++; /* Carry from low to high bitCount */
shsInfo->countLo += ( ( uint32 ) count << 3 );
shsInfo->countHi += ( ( uint32 ) count >> 29 );
/* Process data in SHS_BLOCKSIZE chunks */
while( count >= SHS_BLOCKSIZE )
{
memcpy( (char *) shsInfo->data, (char *) buffer, SHS_BLOCKSIZE );
#ifndef WORDS_BIGENDIAN
byteReverse( shsInfo->data, SHS_BLOCKSIZE );
#endif /* #ifndef WORDS_BIGENDIAN */
shsTransform( shsInfo );
buffer += SHS_BLOCKSIZE;
count -= SHS_BLOCKSIZE;
}
/* Handle any remaining bytes of data. This should only happen once
on the final lot of data */
memcpy( (char *) shsInfo->data, (char *) buffer, count );
}
void shsFinal(SHS_INFO *shsInfo)
{
int count;
uint32 lowBitcount = shsInfo->countLo, highBitcount = shsInfo->countHi;
/* Compute number of bytes mod 64 */
count = ( int ) ( ( shsInfo->countLo >> 3 ) & 0x3F );
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
( ( uint8 * ) shsInfo->data )[ count++ ] = 0x80;
/* Pad out to 56 mod 64 */
if( count > 56 )
{
/* Two lots of padding: Pad the first block to 64 bytes */
memset( ( char * ) shsInfo->data + count, 0, 64 - count );
#ifndef WORDS_BIGENDIAN
byteReverse( shsInfo->data, SHS_BLOCKSIZE );
#endif /* #ifndef WORDS_BIGENDIAN */
shsTransform( shsInfo );
/* Now fill the next block with 56 bytes */
memset( (char *) shsInfo->data, 0, 56 );
}
else
/* Pad block to 56 bytes */
memset( ( char * ) shsInfo->data + count, 0, 56 - count );
#ifndef WORDS_BIGENDIAN
byteReverse( shsInfo->data, SHS_BLOCKSIZE );
#endif /* #ifndef WORDS_BIGENDIAN */
/* Append length in bits and transform */
shsInfo->data[ 14 ] = highBitcount;
shsInfo->data[ 15 ] = lowBitcount;
shsTransform( shsInfo );
#ifndef WORDS_BIGENDIAN
byteReverse( shsInfo->data, SHS_DIGESTSIZE );
#endif /* #ifndef WORDS_BIGENDIAN */
}
#ifdef TEST
/* ----------------------------- SHS Test code --------------------------- */
/* Size of buffer for SHS speed test data */
#define TEST_BLOCK_SIZE ( SHS_DIGESTSIZE * 100 )
/* Number of bytes of test data to process */
#define TEST_BYTES 10000000L
#define TEST_BLOCKS ( TEST_BYTES / TEST_BLOCK_SIZE )
void main()
{
SHS_INFO shsInfo;
time_t endTime, startTime;
uint8 data[ TEST_BLOCK_SIZE ];
long i;
/* Test output data (this is the only test data given in the SHS
document, but chances are if it works for this it'll work for
anything) */
shsInit( &shsInfo );
shsUpdate( &shsInfo, ( uint8 * ) "abc", 3 );
shsFinal( &shsInfo );
if( shsInfo.digest[ 0 ] != 0x0164B8A9L ||
shsInfo.digest[ 1 ] != 0x14CD2A5EL ||
shsInfo.digest[ 2 ] != 0x74C4F7FFL ||
shsInfo.digest[ 3 ] != 0x082C4D97L ||
shsInfo.digest[ 4 ] != 0xF1EDF880L )
{
puts( "Error in SHS implementation" );
exit( -1 );
}
/* Now perform time trial, generating MD for 10MB of data. First,
initialize the test data */
memset( data, 0, TEST_BLOCK_SIZE );
/* Get start time */
printf( "SHS time trial. Processing %ld characters...\n", TEST_BYTES );
time( &startTime );
/* Calculate SHS message digest in TEST_BLOCK_SIZE byte blocks */
shsInit( &shsInfo );
for( i = TEST_BLOCKS; i > 0; i-- )
shsUpdate( &shsInfo, data, TEST_BLOCK_SIZE );
shsFinal( &shsInfo );
/* Get finish time and time difference */
time( &endTime );
printf( "Seconds to process test input: %ld\n", endTime - startTime );
printf( "Characters processed per second: %ld\n", TEST_BYTES / ( endTime - startTime ) );
}
#endif