tripwire-open-source/src/cryptlib/nbtheory.cpp

1031 lines
26 KiB
C++

// nbtheory.cpp - written and placed in the public domain by Wei Dai
#include "pch.h"
#include "nbtheory.h"
#include "misc.h"
#include "asn.h"
#include "algebra.h"
#include <math.h>
#include "algebra.cpp"
#include "eprecomp.cpp"
USING_NAMESPACE(std)
NAMESPACE_BEGIN(NumberTheory)
const unsigned maxPrimeTableSize = 3511;
unsigned primeTableSize=552;
word16 primeTable[maxPrimeTableSize] =
{2, 3, 5, 7, 11, 13, 17, 19,
23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71, 73, 79, 83, 89,
97, 101, 103, 107, 109, 113, 127, 131,
137, 139, 149, 151, 157, 163, 167, 173,
179, 181, 191, 193, 197, 199, 211, 223,
227, 229, 233, 239, 241, 251, 257, 263,
269, 271, 277, 281, 283, 293, 307, 311,
313, 317, 331, 337, 347, 349, 353, 359,
367, 373, 379, 383, 389, 397, 401, 409,
419, 421, 431, 433, 439, 443, 449, 457,
461, 463, 467, 479, 487, 491, 499, 503,
509, 521, 523, 541, 547, 557, 563, 569,
571, 577, 587, 593, 599, 601, 607, 613,
617, 619, 631, 641, 643, 647, 653, 659,
661, 673, 677, 683, 691, 701, 709, 719,
727, 733, 739, 743, 751, 757, 761, 769,
773, 787, 797, 809, 811, 821, 823, 827,
829, 839, 853, 857, 859, 863, 877, 881,
883, 887, 907, 911, 919, 929, 937, 941,
947, 953, 967, 971, 977, 983, 991, 997,
1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049,
1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097,
1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163,
1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223,
1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283,
1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321,
1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423,
1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459,
1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511,
1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571,
1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619,
1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693,
1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747,
1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811,
1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877,
1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949,
1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003,
2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069,
2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129,
2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203,
2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267,
2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311,
2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377,
2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423,
2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503,
2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579,
2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657,
2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693,
2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741,
2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801,
2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861,
2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939,
2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011,
3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079,
3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167,
3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221,
3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301,
3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347,
3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413,
3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491,
3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541,
3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607,
3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671,
3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727,
3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797,
3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863,
3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923,
3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003};
void BuildPrimeTable()
{
unsigned int p=primeTable[primeTableSize-1];
for (unsigned int i=primeTableSize; i<maxPrimeTableSize; i++)
{
int j;
do
{
p+=2;
for (j=1; j<54; j++)
if (p%primeTable[j] == 0)
break;
} while (j!=54);
primeTable[i] = p;
}
primeTableSize = maxPrimeTableSize;
}
bool IsSmallPrime(const Integer &p)
{
BuildPrimeTable();
if (p>primeTable[primeTableSize-1])
return false;
if (p==primeTable[primeTableSize-1])
return true;
for (unsigned i=0; primeTable[i]<=p; i++)
if (p == primeTable[i])
return true;
return false;
}
bool TrialDivision(const Integer &p, unsigned bound)
{
assert(primeTable[primeTableSize-1] >= bound);
unsigned int i;
for (i = 0; primeTable[i]<bound; i++)
if ((p % primeTable[i]) == 0)
return true;
if (bound == primeTable[i])
return (p % bound == 0);
else
return false;
}
bool SmallDivisorsTest(const Integer &p)
{
BuildPrimeTable();
return !TrialDivision(p, primeTable[primeTableSize-1]);
}
bool IsFermatProbablePrime(const Integer &n, const Integer &b)
{
assert(n>1 && b>Integer::Zero() && b<n);
return a_exp_b_mod_c(b, n-1, n)==1;
}
bool IsStrongProbablePrime(const Integer &n, const Integer &b)
{
assert(n>1 && b>Integer::Zero() && b<n);
if ((n.IsEven() && n!=2) || GCD(b, n) != 1)
return false;
Integer nminus1 = (n-1);
unsigned int a;
// calculate a = largest power of 2 that divides (n-1)
for (a=0; ; a++)
if (nminus1.GetBit(a))
break;
Integer m = nminus1>>a;
Integer z = a_exp_b_mod_c(b, m, n);
if (z==1 || z==nminus1)
return true;
for (unsigned j=1; j<a; j++)
{
z = z.Squared()%n;
if (z==nminus1)
return true;
if (z==1)
return false;
}
return false;
}
bool RabinMillerTest(RandomNumberGenerator &rng, const Integer &w, unsigned int rounds)
{
Integer b;
for (unsigned int i=0; i<rounds; i++)
{
b.Randomize(rng, 2, w-1);
if (!IsStrongProbablePrime(w, b))
return false;
}
return true;
}
bool IsLucasProbablePrime(const Integer &n)
{
assert(n>1);
if (n.IsEven())
return n==2;
Integer b=1, d;
unsigned int i=0;
int j;
do
{
if (++i==64 && n.IsSquare()) // avoid infinite loop if n is a square
return false;
++b; ++b;
d = (b.Squared()-4)%n;
}
while ((j=Jacobi(d,n)) == 1);
if (j==0)
return false;
else
return Lucas(n+1, b, n)==2;
}
bool IsStrongLucasProbablePrime(const Integer &n)
{
assert(n>1);
if (n.IsEven())
return n==2;
Integer b=1, d;
unsigned int i=0;
int j;
do
{
if (++i==64 && n.IsSquare()) // avoid infinite loop if n is a square
return false;
++b; ++b;
d = (b.Squared()-4)%n;
}
while ((j=Jacobi(d,n)) == 1);
if (j==0)
return false;
Integer n1 = n-j;
unsigned int a;
// calculate a = largest power of 2 that divides n1
for (a=0; ; a++)
if (n1.GetBit(a))
break;
Integer m = n1>>a;
Integer z = Lucas(m, b, n);
if (z==2 || z==n-2)
return true;
for (i=1; i<a; i++)
{
z = (z.Squared()-2)%n;
if (z==n-2)
return true;
if (z==2)
return false;
}
return false;
}
bool IsPrime(const Integer &p)
{
return (IsSmallPrime(p) || (SmallDivisorsTest(p)
&& IsStrongProbablePrime(p, 3) && IsStrongLucasProbablePrime(p)));
}
class RemainderTable
{
public:
RemainderTable(const Integer &p);
bool HasZero() const;
void Increment();
void IncrementBy(unsigned int i);
void IncrementBy(const RemainderTable &rtQ);
private:
SecBlock<word16> table;
};
RemainderTable::RemainderTable(const Integer &p)
: table((BuildPrimeTable(), primeTableSize))
{
for (unsigned int i=0; i<primeTableSize; i++)
table[i] = (word16)(p%primeTable[i]);
}
bool RemainderTable::HasZero() const
{
unsigned int i;
for (i=0; i<primeTableSize; i++)
if (!table[i])
break;
return (i!=primeTableSize);
}
void RemainderTable::Increment()
{
for (unsigned int i=0; i<primeTableSize; i++)
{
table[i]++;
if (table[i]==primeTable[i])
table[i] = 0;
}
}
void RemainderTable::IncrementBy(unsigned int increment)
{
for (unsigned int i=0; i<primeTableSize; i++)
{
table[i] += increment;
while (table[i]>=primeTable[i])
table[i]-=primeTable[i];
}
}
void RemainderTable::IncrementBy(const RemainderTable &rtQ)
{
for (unsigned int i=0; i<primeTableSize; i++)
{
table[i] += rtQ.table[i];
if (table[i]>=primeTable[i])
table[i]-=primeTable[i];
}
}
inline bool FastProbablePrimeTest(const Integer &n)
{
return IsStrongProbablePrime(n,2);
}
bool NextPrime(Integer &p, const Integer &max, bool blumInt)
{
BuildPrimeTable();
if (p<primeTable[primeTableSize-1])
{
for (unsigned i=0; i<primeTableSize; i++)
if (p<primeTable[i])
{
p = primeTable[i];
return p <= max;
}
assert(false); // shouldn't reach here
}
++p;
if (p.IsEven())
++p;
if (blumInt && !p.GetBit(1))
{++p; ++p;}
if (p>max)
return false;
RemainderTable rt(p);
while (rt.HasZero() || !FastProbablePrimeTest(p) || !IsPrime(p))
{
rt.IncrementBy(blumInt ? 4 : 2);
++p; ++p;
if (blumInt)
{++p; ++p;}
if (p>max)
return false;
}
return true;
}
Integer ProvablePrime(RandomNumberGenerator &rng, unsigned int bits)
{
const unsigned smallPrimeBound = 29, c_opt=10;
Integer p;
BuildPrimeTable();
if (bits < smallPrimeBound)
{
do
p.Randomize(rng, Integer::Power2(bits-1), Integer::Power2(bits)-1, Integer::ODD);
while (TrialDivision(p, 1 << ((bits+1)/2)));
}
else
{
const unsigned margin = bits > 50 ? 20 : (bits-10)/2;
double relativeSize;
do
relativeSize = pow(2.0, double(rng.GetLong())/0xffffffff - 1);
while (bits * relativeSize >= bits - margin);
Integer a,b;
Integer q = ProvablePrime(rng, unsigned(bits*relativeSize));
Integer I = Integer::Power2(bits-2)/q;
Integer I2 = I << 1;
unsigned int trialDivisorBound = (unsigned int)STDMIN((unsigned long)primeTable[primeTableSize-1], (unsigned long)bits*bits/c_opt);
bool success = false;
do
{
p.Randomize(rng, I, I2, Integer::ANY);
p *= q; p <<= 1; ++p;
if (!TrialDivision(p, trialDivisorBound))
{
a.Randomize(rng, 2, p-1, Integer::ANY);
b = a_exp_b_mod_c(a, (p-1)/q, p);
success = (GCD(b-1, p) == 1) && (a_exp_b_mod_c(b, q, p) == 1);
}
}
while (!success);
}
return p;
}
Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u)
{
// isn't operator overloading great?
return p * (u * (xq-xp) % q) + xp;
}
Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q)
{
return CRT(xp, p, xq, q, EuclideanMultiplicativeInverse(p, q));
}
Integer ModularSquareRoot(const Integer &a, const Integer &p)
{
if (p%4 == 3)
return a_exp_b_mod_c(a, (p+1)/4, p);
Integer q=p-1;
unsigned int r=0;
while (q.IsEven())
{
r++;
q >>= 1;
}
Integer n=2;
while (Jacobi(n, p) != -1)
++n;
Integer y = a_exp_b_mod_c(n, q, p);
Integer x = a_exp_b_mod_c(a, (q-1)/2, p);
Integer b = (x.Squared()%p)*a%p;
x = a*x%p;
Integer tempb, t;
while (b != 1)
{
unsigned m=0;
tempb = b;
do
{
m++;
b = b.Squared()%p;
if (m==r)
return Integer::Zero();
}
while (b != 1);
t = y;
for (unsigned i=0; i<r-m-1; i++)
t = t.Squared()%p;
y = t.Squared()%p;
r = m;
x = x*t%p;
b = tempb*y%p;
}
assert(x.Squared()%p == a);
return x;
}
Integer ModularRoot(const Integer &a, const Integer &dp, const Integer &dq,
const Integer &p, const Integer &q, const Integer &u)
{
Integer p2 = ModularExponentiation((a % p), dp, p);
Integer q2 = ModularExponentiation((a % q), dq, q);
return CRT(p2, p, q2, q, u);
}
Integer ModularRoot(const Integer &a, const Integer &e,
const Integer &p, const Integer &q)
{
Integer dp = EuclideanMultiplicativeInverse(e, p-1);
Integer dq = EuclideanMultiplicativeInverse(e, q-1);
Integer u = EuclideanMultiplicativeInverse(p, q);
assert(!!dp && !!dq && !!u);
return ModularRoot(a, dp, dq, p, q, u);
}
/*
Integer GCDI(const Integer &x, const Integer &y)
{
Integer a=x, b=y;
unsigned k=0;
assert(!!a && !!b);
while (a[0]==0 && b[0]==0)
{
a >>= 1;
b >>= 1;
k++;
}
while (a[0]==0)
a >>= 1;
while (b[0]==0)
b >>= 1;
while (1)
{
switch (a.Compare(b))
{
case -1:
b -= a;
while (b[0]==0)
b >>= 1;
break;
case 0:
return (a <<= k);
case 1:
a -= b;
while (a[0]==0)
a >>= 1;
break;
default:
assert(false);
}
}
}
Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b)
{
assert(b.Positive());
if (a.Negative())
return EuclideanMultiplicativeInverse(a%b, b);
if (b[0]==0)
{
if (!b || a[0]==0)
return Integer::Zero(); // no inverse
if (a==1)
return 1;
Integer u = EuclideanMultiplicativeInverse(b, a);
if (!u)
return Integer::Zero(); // no inverse
else
return (b*(a-u)+1)/a;
}
Integer u=1, d=a, v1=b, v3=b, t1, t3, b2=(b+1)>>1;
if (a[0])
{
t1 = Integer::Zero();
t3 = -b;
}
else
{
t1 = b2;
t3 = a>>1;
}
while (!!t3)
{
while (t3[0]==0)
{
t3 >>= 1;
if (t1[0]==0)
t1 >>= 1;
else
{
t1 >>= 1;
t1 += b2;
}
}
if (t3.Positive())
{
u = t1;
d = t3;
}
else
{
v1 = b-t1;
v3 = -t3;
}
t1 = u-v1;
t3 = d-v3;
if (t1.Negative())
t1 += b;
}
if (d==1)
return u;
else
return Integer::Zero(); // no inverse
}
*/
int Jacobi(const Integer &aIn, const Integer &bIn)
{
assert(bIn.IsOdd());
Integer b = bIn, a = aIn%bIn;
int result = 1;
while (!!a)
{
unsigned i=0;
while (a.GetBit(i)==0)
i++;
a>>=i;
if (i%2==1 && (b%8==3 || b%8==5))
result = -result;
if (a%4==3 && b%4==3)
result = -result;
swap(a, b);
a %= b;
}
return (b==1) ? result : 0;
}
Integer Lucas(const Integer &e, const Integer &pIn, const Integer &n)
{
unsigned i = e.BitCount();
if (i==0)
return 2;
MontgomeryRepresentation m(n);
Integer p=m.ConvertIn(pIn%n), two=m.ConvertIn(2);
Integer v=p, v1=m.Subtract(m.Square(p), two);
i--;
while (i--)
{
if (e.GetBit(i))
{
// v = (v*v1 - p) % m;
v = m.Subtract(m.Multiply(v,v1), p);
// v1 = (v1*v1 - 2) % m;
v1 = m.Subtract(m.Square(v1), two);
}
else
{
// v1 = (v*v1 - p) % m;
v1 = m.Subtract(m.Multiply(v,v1), p);
// v = (v*v - 2) % m;
v = m.Subtract(m.Square(v), two);
}
}
return m.ConvertOut(v);
}
// This is Peter Montgomery's unpublished Lucas sequence evalutation algorithm.
// The total number of multiplies and squares used is less than the binary
// algorithm (see above). Unfortunately I can't get it to run as fast as
// the binary algorithm because of the extra overhead.
/*
Integer Lucas(const Integer &n, const Integer &P, const Integer &modulus)
{
if (!n)
return 2;
#define f(A, B, C) m.Subtract(m.Multiply(A, B), C)
#define X2(A) m.Subtract(m.Square(A), two)
#define X3(A) m.Multiply(A, m.Subtract(m.Square(A), three))
MontgomeryRepresentation m(modulus);
Integer two=m.ConvertIn(2), three=m.ConvertIn(3);
Integer A=m.ConvertIn(P), B, C, p, d=n, e, r, t, T, U;
while (d!=1)
{
p = d;
unsigned int b = WORD_BITS * p.WordCount();
Integer alpha = (Integer(5)<<(2*b-2)).SquareRoot() - Integer::Power2(b-1);
r = (p*alpha)>>b;
e = d-r;
B = A;
C = two;
d = r;
while (d!=e)
{
if (d<e)
{
swap(d, e);
swap(A, B);
}
unsigned int dm2 = d[0], em2 = e[0];
unsigned int dm3 = d%3, em3 = e%3;
// if ((dm6+em6)%3 == 0 && d <= e + (e>>2))
if ((dm3+em3==0 || dm3+em3==3) && (t = e, t >>= 2, t += e, d <= t))
{
// #1
// t = (d+d-e)/3;
// t = d; t += d; t -= e; t /= 3;
// e = (e+e-d)/3;
// e += e; e -= d; e /= 3;
// d = t;
// t = (d+e)/3
t = d; t += e; t /= 3;
e -= t;
d -= t;
T = f(A, B, C);
U = f(T, A, B);
B = f(T, B, A);
A = U;
continue;
}
// if (dm6 == em6 && d <= e + (e>>2))
if (dm3 == em3 && dm2 == em2 && (t = e, t >>= 2, t += e, d <= t))
{
// #2
// d = (d-e)>>1;
d -= e; d >>= 1;
B = f(A, B, C);
A = X2(A);
continue;
}
// if (d <= (e<<2))
if (d <= (t = e, t <<= 2))
{
// #3
d -= e;
C = f(A, B, C);
swap(B, C);
continue;
}
if (dm2 == em2)
{
// #4
// d = (d-e)>>1;
d -= e; d >>= 1;
B = f(A, B, C);
A = X2(A);
continue;
}
if (dm2 == 0)
{
// #5
d >>= 1;
C = f(A, C, B);
A = X2(A);
continue;
}
if (dm3 == 0)
{
// #6
// d = d/3 - e;
d /= 3; d -= e;
T = X2(A);
C = f(T, f(A, B, C), C);
swap(B, C);
A = f(T, A, A);
continue;
}
if (dm3+em3==0 || dm3+em3==3)
{
// #7
// d = (d-e-e)/3;
d -= e; d -= e; d /= 3;
T = f(A, B, C);
B = f(T, A, B);
A = X3(A);
continue;
}
if (dm3 == em3)
{
// #8
// d = (d-e)/3;
d -= e; d /= 3;
T = f(A, B, C);
C = f(A, C, B);
B = T;
A = X3(A);
continue;
}
assert(em2 == 0);
// #9
e >>= 1;
C = f(C, B, A);
B = X2(B);
}
A = f(A, B, C);
}
#undef f
#undef X2
#undef X3
return m.ConvertOut(A);
}
*/
Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u)
{
Integer d = (m*m-4);
Integer p2 = p-Jacobi(d,p);
Integer q2 = q-Jacobi(d,q);
return CRT(Lucas(EuclideanMultiplicativeInverse(e,p2), m, p), p, Lucas(EuclideanMultiplicativeInverse(e,q2), m, q), q, u);
}
Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q)
{
return InverseLucas(e, m, p, q, EuclideanMultiplicativeInverse(p, q));
}
unsigned int FactoringWorkFactor(unsigned int n)
{
// extrapolated from the table in Odlyzko's "The Future of Integer Factorization"
// updated to reflect the factoring of RSA-130
if (n<5) return 0;
else return (unsigned int)(2.4 * pow(n, 1.0/3.0) * pow(log(double(n)), 2.0/3.0) - 5);
}
unsigned int DiscreteLogWorkFactor(unsigned int n)
{
// assuming discrete log takes about the same time as factoring
if (n<5) return 0;
else return (unsigned int)(2.4 * pow(n, 1.0/3.0) * pow(log(double(n)), 2.0/3.0) - 5);
}
NAMESPACE_END
// ********************************************************
USING_NAMESPACE(NumberTheory)
// generate a random prime p of the form 2*q+delta, where q is also prime
// warning: this is slow!
PrimeAndGenerator::PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits)
{
Integer minQ = Integer::Power2(pbits-2);
Integer maxQ = Integer::Power2(pbits-1) - 1;
do
{
q.Randomize(rng, minQ, maxQ, Integer::ODD);
p = 2*q+delta;
RemainderTable rtQ(q);
RemainderTable rtP(p);
while (rtQ.HasZero() || rtP.HasZero() ||
!FastProbablePrimeTest(q) || !FastProbablePrimeTest(p) ||
!IsPrime(q) || !IsPrime(p))
{
rtQ.IncrementBy(2);
rtP.IncrementBy(4);
++q; ++q;
++p; ++p; ++p; ++p;
}
} while (q>maxQ);
if (delta == 1)
{
// find g such that g is a quadratic residue mod p, then g has order q
// g=4 always works, but this way we get the smallest quadratic residue (other than 1)
for (g=2; Jacobi(g, p) != 1; ++g);
}
else
{
assert(delta == -1);
// find g such that g*g-4 is a quadratic non-residue,
// and such that g has order q
for (g=3; ; ++g)
if (Jacobi(g*g-4, p)==-1 && Lucas(q, g, p)==2)
break;
}
}
// generate a random prime p of the form 2*r*q+delta, where q is also prime
PrimeAndGenerator::PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned int qbits)
{
assert(pbits > qbits);
Integer minQ = Integer::Power2(qbits-1);
Integer maxQ = Integer::Power2(qbits) - 1;
Integer minP = Integer::Power2(pbits-1);
Integer maxP = Integer::Power2(pbits) - 1;
while (1)
{
q.Randomize(rng, minQ, maxQ, Integer::PRIME);
Integer q2 = 2*q;
RemainderTable rtq2(q2);
// generate a random number of the form 2*r*q+delta
p.Randomize(rng, minP, maxP, Integer::ANY);
p = p - p%q2 + q2 + delta;
RemainderTable rtp(p);
// now increment p by 2*q until p is prime
while (p<=maxP)
{
if (rtp.HasZero() || !FastProbablePrimeTest(p) || !IsPrime(p))
{
p += q2;
rtp.IncrementBy(rtq2);
}
else
{
// find a random g of order q
if (delta==1)
{
do
{
Integer h(rng, 2, p-2, Integer::ANY);
g = a_exp_b_mod_c(h, (p-1)/q, p);
} while (g <= 1);
assert(a_exp_b_mod_c(g, q, p)==1);
}
else
{
assert(delta==-1);
do
{
Integer h(rng, 3, p-2, Integer::ANY);
if (Jacobi(h*h-4, p)==1)
continue;
g = Lucas((p+1)/q, h, p);
} while (g <= 2);
assert(Lucas(q, g, p) == 2);
}
return;
}
}
}
}
// ********************************************************
ModExpPrecomputation::~ModExpPrecomputation() {}
ModExpPrecomputation::ModExpPrecomputation(const Integer &modulus, const Integer &base, unsigned int maxExpBits, unsigned int storage)
{
Precompute(modulus, base, maxExpBits, storage);
}
ModExpPrecomputation::ModExpPrecomputation(const ModExpPrecomputation &mep)
: mr(new MontgomeryRepresentation(*mep.mr)),
mg(new MR_MG(*mr)),
ep(new ExponentiationPrecomputation<MR_MG>(*mg, *mep.ep))
{
}
void ModExpPrecomputation::Precompute(const Integer &modulus, const Integer &base, unsigned int maxExpBits, unsigned int storage)
{
if (!mr.get() || mr->GetModulus()!=modulus)
{
mr.reset(new MontgomeryRepresentation(modulus));
mg.reset(new MR_MG(*mr));
ep.reset(NULL);
}
if (!ep.get() || ep->storage < storage)
ep.reset(new ExponentiationPrecomputation<MR_MG>(*mg, mr->ConvertIn(base), maxExpBits, storage));
}
void ModExpPrecomputation::Load(const Integer &modulus, BufferedTransformation &bt)
{
if (!mr.get() || mr->GetModulus()!=modulus)
{
mr.reset(new MontgomeryRepresentation(modulus));
mg.reset(new MR_MG(*mr));
}
ep.reset(new ExponentiationPrecomputation<MR_MG>(*mg));
BERSequenceDecoder seq(bt);
ep->storage = (unsigned int)(Integer(seq).ConvertToLong());
ep->exponentBase.BERDecode(seq);
ep->g.resize(ep->storage);
for (unsigned i=0; i<ep->storage; i++)
ep->g[i].BERDecode(seq);
}
void ModExpPrecomputation::Save(BufferedTransformation &bt) const
{
assert(ep.get() != 0);
DERSequenceEncoder seq(bt);
Integer(ep->storage).DEREncode(seq);
ep->exponentBase.DEREncode(seq);
for (unsigned i=0; i<ep->storage; i++)
ep->g[i].DEREncode(seq);
}
Integer ModExpPrecomputation::Exponentiate(const Integer &exponent) const
{
assert(mr.get() && ep.get());
return mr->ConvertOut(ep->Exponentiate(exponent));
}
Integer ModExpPrecomputation::CascadeExponentiate(const Integer &exponent,
ModExpPrecomputation pc2, const Integer &exponent2) const
{
assert(mr.get() && ep.get());
return mr->ConvertOut(ep->CascadeExponentiate(exponent, *pc2.ep, exponent2));
}