technical-screen-2025-10-22/app.py

296 lines
13 KiB
Python

#!/usr/bin/env python3
print("🚀 APP.PY STARTING - IMMEDIATE FEEDBACK", flush=True)
import sys
import os
import re
import time
from pathlib import Path
print("📦 BASIC IMPORTS COMPLETE", flush=True)
def generate_toc(markdown_content):
"""Generate a Table of Contents from markdown headers"""
print(" 📋 Generating Table of Contents...", flush=True)
lines = markdown_content.split('\n')
toc_lines = []
toc_lines.append("## Table of Contents")
toc_lines.append("")
header_count = 0
for line in lines:
# Match headers (##, ###, etc.)
header_match = re.match(r'^(#{2,})\s+(.+)$', line)
if header_match:
header_count += 1
level = len(header_match.group(1)) - 2 # Convert ## to 0, ### to 1, etc.
title = header_match.group(2)
# Create anchor link
anchor = re.sub(r'[^a-zA-Z0-9\s-]', '', title.lower())
anchor = re.sub(r'\s+', '-', anchor.strip())
# Add indentation based on header level
indent = " " * level
toc_lines.append(f"{indent}- [{title}](#{anchor})")
toc_lines.append("")
toc_lines.append("---")
toc_lines.append("")
print(f" ✅ Generated TOC with {header_count} headers", flush=True)
return '\n'.join(toc_lines)
def main():
"""Simple pitch deck analyzer with comprehensive debugging"""
print("🚀 PITCH DECK ANALYZER MAIN FUNCTION STARTING", flush=True)
print("=" * 50, flush=True)
if len(sys.argv) < 2:
print("❌ Usage: python app.py <pdf_file>", flush=True)
return
pdf_path = sys.argv[1]
if not os.path.exists(pdf_path):
print(f"❌ Error: File '{pdf_path}' not found", flush=True)
return
print(f"📁 Processing file: {pdf_path}", flush=True)
print(f"📁 File exists: {os.path.exists(pdf_path)}", flush=True)
print(f"📁 File size: {os.path.getsize(pdf_path)} bytes", flush=True)
# Import what we need directly (avoid __init__.py issues)
print("\n📦 IMPORTING MODULES", flush=True)
print("-" * 30, flush=True)
sys.path.append('modules')
print(" 🔄 Importing client module...", flush=True)
from client import get_openrouter_client
print(" ✅ client module imported successfully", flush=True)
print(" 🔄 Importing pdf_processor module...", flush=True)
from pdf_processor import extract_slides_from_pdf
print(" ✅ pdf_processor module imported successfully", flush=True)
print(" 🔄 Importing analysis module...", flush=True)
from analysis import analyze_slides_batch
print(" ✅ analysis module imported successfully", flush=True)
print(" 🔄 Importing markdown_utils module...", flush=True)
from markdown_utils import send_to_api_and_get_haste_link
print(" ✅ markdown_utils module imported successfully", flush=True)
print("✅ ALL MODULES IMPORTED SUCCESSFULLY", flush=True)
# Extract slides
print("\n📄 EXTRACTING SLIDES", flush=True)
print("-" * 30, flush=True)
print(" 🔄 Calling extract_slides_from_pdf...", flush=True)
start_time = time.time()
slides = extract_slides_from_pdf(pdf_path, "processed", Path(pdf_path).stem)
extraction_time = time.time() - start_time
print(f" ✅ extract_slides_from_pdf completed in {extraction_time:.2f}s", flush=True)
print(f" 📊 Extracted {len(slides)} slides", flush=True)
# LIMIT TO FIRST 3 SLIDES FOR TESTING
print(f" 🔄 Limiting to first 3 slides for testing...", flush=True)
slides = slides[:3]
print(f" 📊 Processing {len(slides)} slides", flush=True)
# Analyze slides
print("\n🧠 ANALYZING SLIDES", flush=True)
print("-" * 30, flush=True)
print(" 🔄 Initializing API client...", flush=True)
client = get_openrouter_client()
print(" ✅ API client initialized successfully", flush=True)
print(" 🔄 Calling analyze_slides_batch...", flush=True)
analysis_start_time = time.time()
analysis_results = analyze_slides_batch(client, slides)
analysis_time = time.time() - analysis_start_time
print(f" ✅ analyze_slides_batch completed in {analysis_time:.2f}s", flush=True)
print(f" 📊 Analysis results: {len(analysis_results)} slides analyzed", flush=True)
# Create report
print("\n📝 CREATING REPORT", flush=True)
print("-" * 30, flush=True)
print(" 🔄 Building markdown content...", flush=True)
markdown_content = f"# Pitch Deck Analysis: {Path(pdf_path).stem}\n\n"
# Add analysis metadata
markdown_content += "This analysis was generated using multiple AI agents, each specialized in different aspects of slide evaluation.\n\n"
markdown_content += f"**Source File:** `{Path(pdf_path).name}` (PDF)\n"
markdown_content += f"**Analysis Generated:** {len(slides)} slides processed (limited for testing)\n"
markdown_content += "**Processing Method:** Individual processing with specialized AI agents\n"
markdown_content += "**Text Extraction:** Docling-powered text transcription\n\n"
# Add executive summary at the top (model-assisted with heuristic fallback)
print(" 🔄 Generating executive summary...", flush=True)
def _build_heuristic_summary(analysis_results_local):
categories = [
('problem_analyzer', 'Problem Analysis'),
('solution_evaluator', 'Solution Evaluation'),
('market_opportunity_assessor', 'Market Opportunity'),
('traction_evaluator', 'Traction'),
('funding_analyzer', 'Funding & Ask')
]
lines = []
lines.append("## Executive Summary\n")
# Overall one-liner assembled from first sentences
overall_bits = []
for slide_num in sorted(analysis_results_local.keys()):
slide_agents = analysis_results_local.get(slide_num, {})
pa = slide_agents.get('problem_analyzer', {}).get('analysis', '')
if pa:
first_sentence = pa.split('. ')[0].strip()
if first_sentence:
overall_bits.append(first_sentence)
if len(overall_bits) >= 3:
break
if overall_bits:
lines.append("" + " ".join(overall_bits) + "\n")
# Coverage table-like bullets
lines.append("### Coverage of Points of Interest\n")
for key, title in categories:
coverage_note = "Covered"
for slide_agents in analysis_results_local.values():
if key in slide_agents and slide_agents[key].get('analysis'):
coverage_note = "Covered"
break
lines.append(f"- {title}: {coverage_note}")
lines.append("\n### Slide Snapshots\n")
for slide_num in sorted(analysis_results_local.keys()):
slide_agents = analysis_results_local.get(slide_num, {})
pa = slide_agents.get('problem_analyzer', {}).get('analysis', '')
one_liner = (pa.split('\n')[0].split('. ')[0]).strip() if pa else "No clear problem statement identified."
lines.append(f"- Slide {slide_num}: {one_liner}")
lines.append("\n")
return "\n".join(lines)
def _build_model_summary(client_local, analysis_results_local):
try:
# Aggregate content for model
blocks = []
for slide_num in sorted(analysis_results_local.keys()):
slide_agents = analysis_results_local[slide_num]
parts = []
for k, v in slide_agents.items():
agent_name = v.get('agent', k)
analysis_text = v.get('analysis', '')
parts.append(f"{agent_name}: {analysis_text}")
blocks.append(f"Slide {slide_num}:\n" + "\n".join(parts))
aggregate_text = "\n\n".join(blocks)
messages = [
{"role": "system", "content": "You are a senior pitch deck analyst. Create a concise executive summary."},
{"role": "user", "content": [
{"type": "text", "text": "Summarize this deck. Provide: 1) 2-3 sentence overall summary of what the deck accomplishes; 2) A bullet list rating coverage of these points of interest: Problem, Solution, Market Opportunity, Traction, Funding & Ask (ratings: Strong/Covered/Weak/Not covered) with one short note each; 3) A one-line snapshot per slide. Return Markdown only."},
{"type": "text", "text": aggregate_text}
]}
]
response = client_local.chat.completions.create(
model="gpt-4o-mini",
messages=messages,
max_tokens=700
)
content = response.choices[0].message.content.strip()
if content:
return content + "\n\n"
except Exception as _e:
print(f" ⚠️ Model summary generation failed: {_e}", flush=True)
return None
summary_md = _build_model_summary(client, analysis_results) or _build_heuristic_summary(analysis_results)
markdown_content += summary_md
print(f" 📊 Building markdown for {len(slides)} slides...", flush=True)
for i, slide_data in enumerate(slides):
slide_num = i + 1
print(f" 🔄 Processing slide {slide_num}/{len(slides)}...", flush=True)
analysis = analysis_results.get(slide_num, {})
markdown_content += f"# Slide {slide_num}\n\n"
markdown_content += f"![Slide {slide_num}](slides/{slide_data['filename']})\n\n"
if analysis:
markdown_content += "## Agentic Analysis\n\n"
# Format each agent's analysis
agent_count = 0
for agent_key, agent_data in analysis.items():
if isinstance(agent_data, dict) and 'agent' in agent_data and 'analysis' in agent_data:
agent_count += 1
agent_name = agent_data['agent']
agent_analysis = agent_data['analysis']
markdown_content += f"### {agent_name}\n\n"
markdown_content += f"{agent_analysis}\n\n"
print(f" ✅ Added {agent_count} agent analyses for slide {slide_num}", flush=True)
else:
markdown_content += "## Agentic Analysis\n\n"
markdown_content += "No analysis available\n\n"
print(f" ⚠️ No analysis available for slide {slide_num}", flush=True)
markdown_content += "---\n\n"
print(" ✅ Markdown content built successfully", flush=True)
# Generate Table of Contents
print(" 🔄 Generating Table of Contents...", flush=True)
toc = generate_toc(markdown_content)
# Insert TOC after the main title
print(" 🔄 Inserting TOC into document...", flush=True)
lines = markdown_content.split('\n')
final_content = []
final_content.append(lines[0]) # Main title
final_content.append("") # Empty line
final_content.append(toc) # TOC
final_content.extend(lines[2:]) # Rest of content
final_markdown = '\n'.join(final_content)
print(f" ✅ Final markdown created: {len(final_markdown)} characters", flush=True)
# Save report
print("\n💾 SAVING REPORT", flush=True)
print("-" * 30, flush=True)
output_file = f"processed/{Path(pdf_path).stem}_analysis.md"
print(f" 🔄 Saving to: {output_file}", flush=True)
os.makedirs("processed", exist_ok=True)
with open(output_file, 'w', encoding='utf-8') as f:
f.write(final_markdown)
print(f" ✅ Report saved successfully ({len(final_markdown)} characters)", flush=True)
# Always upload the report
print("\n🌐 UPLOADING REPORT", flush=True)
print("-" * 30, flush=True)
print(" 🔄 Calling send_to_api_and_get_haste_link...", flush=True)
upload_result = send_to_api_and_get_haste_link(final_markdown, Path(pdf_path).stem)
if isinstance(upload_result, tuple) or isinstance(upload_result, list):
raw_url, html_url = upload_result if len(upload_result) >= 2 else (upload_result[0], None)
if raw_url:
print(f" ✅ Raw markdown URL: {raw_url}", flush=True)
if html_url:
print(f" ✅ HTML URL: {html_url}", flush=True)
if not raw_url and not html_url:
print(" ❌ Upload failed - no URLs returned", flush=True)
elif upload_result:
print(f" ✅ Report uploaded successfully: {upload_result}", flush=True)
else:
print(" ❌ Upload failed - no URL returned", flush=True)
print("\n🎉 PROCESSING COMPLETE!", flush=True)
print("=" * 50, flush=True)
if __name__ == "__main__":
print("🎯 __main__ BLOCK ENTERED", flush=True)
main()