ploughshares/docker/crawler-google-alerts/main.py

269 lines
10 KiB
Python

import asyncio
from typing import Optional
import google.generativeai as genai
import json
import os
import re
import time
from dotenv import load_dotenv
import requests
from get_all_feed_contents import get_all_feed_contents
load_dotenv()
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
INPUT_FILE = "./page_content.json"
MODEL_NAME = "gemini-2.0-flash-lite"
# TODO: refine
EXTRACTION_PROMPT = """
You are a precise data-extraction system.
Given the DOCUMENT TEXT below, extract ALL transactions or arms-export relevant
entries and output a JSON array (possibly empty) of objects that match the
Project Ploughshares API schema. Output ONLY the JSON array — no markdown,
no commentary, no code fences.
Each object must use the following fields (required fields must be provided
and set to "Not Found" if absent):
Required fields:
- transaction_type (string) # e.g., "Export", "Purchase Order", "Component Supply"
- company_division (string) # company or division name (use "Not Found" if unknown)
- recipient (string) # receiving country or recipient (use "Not Found" if unknown)
Optional fields (include if present):
- amount (string or number) # monetary value if present (e.g., "15,000,000 CAD")
- description (string)
- address_1, address_2, city, province, region, postal_code
- source_date (string YYYY-MM-DD)
- source_description (string)
- grant_type (string)
- commodity_class (string) # e.g., missile components, avionics, engines
- contract_number (string)
- comments (string)
- is_primary (boolean)
Additionally, include these two new fields to help filter relevance:
- canadian_relevance (string) # one of: "direct", "indirect", "none"
- "direct" = Canadian company or Canada-origin export of military goods/components
- "indirect" = Canadian-made parts/components appear in a larger export (final assembly elsewhere)
- "none" = no meaningful Canadian connection
- relation_explanation (string) # short explanation why this is direct/indirect/none (1-2 sentences)
Rules:
1. If a piece of info cannot be found, set it to the string "Not Found" (not null).
2. If multiple transactions are described in the text, output them as separate objects.
3. If the text contains the same transaction repeated, ensure you only output one object per distinct transaction.
4. Output must be valid JSON (an array). Example:
[
{{
"transaction_type": "Export",
"company_division": "Example Corp Canada",
"recipient": "Country X",
"amount": "3,000,000 CAD",
"commodity_class": "avionics modules",
"description": "Example summary ...",
"source_url": "https://example.com/article",
"canadian_relevance": "direct",
"relation_explanation": "Company is based in Canada and shipped avionics modules."
}}
]
DOCUMENT TEXT:
{text_content}
"""
def extract_json_from_text(text):
"""
Attempts to find and return the first JSON array or object in a text blob.
This removes markdown fences and extracts from the first '[' ... ']' or '{' ... '}' pair.
"""
if not text or not isinstance(text, str):
return None
# remove common fences
cleaned = text.strip()
cleaned = cleaned.replace("```json", "").replace("```", "").strip()
# Try to locate a JSON array first
arr_match = re.search(r"(\[.*\])", cleaned, flags=re.DOTALL)
if arr_match:
return arr_match.group(1)
# Otherwise try a single JSON object
obj_match = re.search(r"(\{.*\})", cleaned, flags=re.DOTALL)
if obj_match:
return obj_match.group(1)
return None
def process_content_with_gemini(text_content):
"""
Sends the text to Gemini with the extraction prompt and parses the JSON response.
Uses your existing SDK usage pattern (genai.GenerativeModel).
"""
# Keep using your existing model init pattern
model = genai.GenerativeModel(MODEL_NAME) # type: ignore
prompt = EXTRACTION_PROMPT.format(text_content=text_content)
try:
# Generate content. Your original code used model.generate_content(prompt)
response = model.generate_content(prompt)
# Response object in your environment exposes .text (as in your original script)
raw = getattr(response, "text", str(response))
# Try to extract JSON from the possibly noisy response
json_fragment = extract_json_from_text(raw) or raw
# Parse JSON
parsed = json.loads(json_fragment)
# Ensure it's an array
if isinstance(parsed, dict):
parsed = [parsed]
return parsed
except Exception as e:
print(f" ❌ An error occurred while calling Gemini or parsing its response: {e}")
# print raw text to help debugging if available
try:
print(" Raw response (truncated):", raw[:1000])
except Exception:
pass
return {"error": str(e)}
def is_valid_transaction(tx):
"""
Basic validation to ensure required API fields exist.
Required fields (per API): transaction_type, company_division, recipient
If a field is present but "Not Found", treat as missing for the
purposes of deciding whether to keep the record (we still surface it sometimes).
"""
for field in ["transaction_type", "company_division", "recipient"]:
if field not in tx or not tx[field] or tx[field] == "Not Found":
return False
return True
API_BASE_URL = "http://ploughshares.nixc.us/api/transaction"
HEADERS = {"Content-Type": "application/json"}
allowed_fields = {
"transaction_type", "company_division", "recipient", "amount",
"description", "address_1", "address_2", "city", "province", "region",
"postal_code", "source_date", "source_description", "grant_type",
"commodity_class", "contract_number", "comments", "is_primary"
}
def clean_for_api(tx):
cleaned = {k: v for k, v in tx.items() if k in allowed_fields}
# Remove invalid source_date
if "source_date" in cleaned:
if not isinstance(cleaned["source_date"], str) or cleaned["source_date"].lower() == "not found":
cleaned.pop("source_date")
# Remove invalid amount (API expects numeric)
if "amount" in cleaned:
# If "Not Found" or not parseable as a float, drop it
try:
float(str(cleaned["amount"]).replace(",", "").replace("$", ""))
except ValueError:
cleaned.pop("amount")
# Use source_url for source_description
if "source_url" in tx:
cleaned["source_description"] = tx["source_url"]
return cleaned
def post_transaction(transaction):
payload = clean_for_api(transaction)
response = requests.post(API_BASE_URL, headers=HEADERS, json=payload)
if response.status_code == 200 or response.status_code == 201:
print(f"✅ Created transaction for {payload['company_division']} → ID: {response.json().get('transaction_id')}")
else:
print(f"❌ Failed to create transaction: {response.status_code} - {response.text}")
async def main():
"""Main function to run the data extraction process."""
if not GOOGLE_API_KEY:
print("❌ Error: GOOGLE_API_KEY environment variable not set.")
return
genai.configure(api_key=GOOGLE_API_KEY) # type: ignore
print("Retrieving all feed contents...")
scraped_pages = await get_all_feed_contents()
if not scraped_pages:
print("❌ Error: No scraper results found.")
return
print("✅ Successfully retrieved all feed contents.")
all_extracted_deals = []
total_pages = len(scraped_pages)
print(f"🤖 Starting information extraction with Gemini for {total_pages} pages...")
for i, page in enumerate(scraped_pages):
url = page.get("url", "unknown_url")
print(f"\nProcessing page {i+1}/{total_pages}: {page['url']}")
# Avoid processing pages with very little text
text = page.get("content", "")
if len(text) < 150:
print(" ⏩ Skipping page due to insufficient content.")
continue
extracted_items = process_content_with_gemini(page['content'])
# If model returned a single object or error, handle gracefully
if not extracted_items:
print(" ⚪ Gemini returned no items.")
time.sleep(1)
continue
if isinstance(extracted_items, dict) and "error" in extracted_items:
print(" ⚠️ Gemini error:", extracted_items.get("error"))
time.sleep(1)
continue
# iterate through items (should be array of objects)
for tx in extracted_items:
# attach source_url for traceability
tx.setdefault("source_url", url) # type: ignore
# if the model gives canadian_relevance, use it to decide whether to keep
relevance = (tx.get("canadian_relevance") or "none").lower() # type: ignore
explanation = tx.get("relation_explanation", "") # type: ignore
# If model says 'none', skip by default (these are the irrelevant ones like US missile contracts)
if relevance == "none":
print(" ⚪ Skipping — model marked this as non-Canadian. Explanation:", explanation[:200])
continue
# basic required-field check (we want the API-required fields present)
if not is_valid_transaction(tx):
print(" ⚠️ Skipping — missing required API fields in extracted transaction:", tx)
continue
# Optionally normalize some fields (convert "amount" to a canonical string) - keep simple for now
# Save the item
all_extracted_deals.append(tx)
print(f" ✔️ Kept transaction: {tx.get('company_division')}{tx.get('recipient')} ({relevance})") # type: ignore
# Respect rate limit
time.sleep(1)
if all_extracted_deals:
print("WRITING TO DB")
for transaction in all_extracted_deals:
try:
post_transaction(transaction)
except Exception as e:
print(f"Error posting transaction: {e}")
else:
print("\nNo relevant deals were extracted from any of the pages.")
if __name__ == "__main__":
asyncio.run(main())