headphones/firmware/code/configuration_manager.c

225 lines
8.0 KiB
C

/**
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "pico/stdlib.h"
#include "pico/usb_device.h"
#include "configuration_manager.h"
#include "configuration_types.h"
// TODO: Duplicated from os_descriptors.h
#define U16_HIGH(_u16) ((uint8_t) (((_u16) >> 8) & 0x00ff))
#define U16_LOW(_u16) ((uint8_t) ((_u16) & 0x00ff))
#define U16_TO_U8S_LE(_u16) U16_LOW(_u16), U16_HIGH(_u16)
/**
* We have multiple copies of the device configuration. This is the factory
* default configuration, it is static data in the firmware.
* We also potentially have a user configuration stored at the end of flash
* memory. And an in RAM working configuration.
*
* The idea is that when the device boots, it tries to use the user config
* from the end of flash. If that is not present, or is invalid, we use this
* default config instead.
*
* If the user sends an updated configuration over the USB port, it is stored
* in RAM as a working configuration, and is used (until we lose power). If
* the user issues a save command the working configuration is written to flash
* and becomes the new user configuration.
*/
static const default_configuration default_config = {
.filters = {
.filter = { FILTER_CONFIGURATION, sizeof(default_config.filters) },
.f1 = {PEAKING, 38, -19, 0.9},
.f2 = {LOWSHELF, 2900, 2, 0.7},
.f3 = {PEAKING, 430, 3, 3.5},
.f4 = {HIGHSHELF, 8400, 2, 0.7},
.f5 = {PEAKING, 4800, 3, 5}
}
};
/**
* TODO: For now, assume we always get a complete configuration but maybe we
* should handle merging configurations where, for example, only a new
* filter_configuration_tlv was received.
*/
static uint8_t working_configuration[256];
static uint8_t result_buffer[256] = { U16_TO_U8S_LE(NOK), U16_TO_U8S_LE(4) };
static bool config_dirty = false;
static uint16_t write_offset = 0;
static uint16_t read_offset = 0;
bool validate_filter_configuration(filter_configuration_tlv *filters)
{
if (filters->header.type != FILTER_CONFIGURATION)
{
printf("Error! Not a filter TLV (%x)..\n", filters->header.type);
return false;
}
uint8_t *ptr = (uint8_t *)filters->header.value;
const uint8_t *end = (uint8_t *)filters + filters->header.length;
while ((ptr + 4) < end)
{
uint32_t type = *(uint32_t *)ptr;
uint16_t remaining = (uint16_t)(end - ptr);
printf("Found Filter Type %d (%p rem: %d)..\n", type, ptr, remaining);
switch (type)
{
case LOWPASS:
case HIGHPASS:
case BANDPASSSKIRT:
case BANDPASSPEAK:
case NOTCH:
case ALLPASS:
{
if (remaining < sizeof(filter2))
{
printf("Error! Not enough data left for filter2 (%d)..\n", remaining);
return false;
}
filter2 *args = (filter2 *)ptr;
printf("Args: F0: %0.2f, Q: %0.2f\n", args->f0, args->Q);
ptr += sizeof(filter2);
break;
}
case PEAKING:
case LOWSHELF:
case HIGHSHELF:
{
if (remaining < sizeof(filter3))
{
printf("Error! Not enough data left for filter3 (%d)..\n", remaining);
return false;
}
filter3 *args = (filter3 *)ptr;
printf("Args: F0: %0.2f, dbGain: %0.2f, Q: %0.2f\n", args->f0, args->dBgain, args->Q);
ptr += sizeof(filter3);
break;
}
default:
printf("Unknown filter type\n");
return false;
}
}
if (ptr != end)
{
printf("Error! Did not consume the whole TLV (%p != %p)..\n", ptr, end);
return false;
}
printf("Config looks good..\n");
return true;
}
bool validate_configuration(tlv_header *config)
{
if (config->type != SET_CONFIGURATION) {
printf("Unexpcected Config type: %d\n", config->type);
return false;
}
uint8_t *ptr = (uint8_t *)config->value;
const uint8_t *end = (uint8_t *)config + config->length;
while (ptr < end) {
tlv_header* tlv = (tlv_header*) ptr;
printf("Found TLV type: %d\n", tlv->type);
if (tlv->type == FILTER_CONFIGURATION)
{
if (!validate_filter_configuration((filter_configuration_tlv*) tlv)) {
return false;
}
}
ptr += tlv->length;
}
}
void load_config()
{
// Try to load data from flash
// If that is no good, use the default config
}
void save_config()
{
// Write data to flash
}
// This callback is called when the client sends a message to the device.
// We implement a simple messaging protocol. The client sends us a message that
// we consume here. All messages are constructed of TLV's (Type Length Value).
// In some cases the Value may be a set of TLV's. However, each message has an
// owning TLV, and its length determines the length of the transfer.
// Once we have consumed the whole message, we validate it and populate the result
// buffer with a TLV which we expect the client to read next.
void config_out_packet(struct usb_endpoint *ep) {
struct usb_buffer *buffer = usb_current_out_packet_buffer(ep);
printf("config_out_packet %d\n", buffer->data_len);
memcpy(&working_configuration[write_offset], buffer->data, buffer->data_len);
write_offset += buffer->data_len;
const uint16_t transfer_length = ((tlv_header*) working_configuration)->length;
printf("config_length %d %d\n", transfer_length, write_offset);
if (transfer_length >= write_offset) {
// Command complete, fill the result buffer
tlv_header* result = ((tlv_header*) result_buffer);
write_offset = 0;
if (validate_configuration((tlv_header*) working_configuration)) {
result->type = OK;
result->length = 4;
}
else {
result->type = NOK;
result->length = 4;
}
}
usb_grow_transfer(ep->current_transfer, 1);
usb_packet_done(ep);
}
// This callback is called when the client attempts to read data from the device.
// The client should have previously written a command which will have populated the
// result_buffer. The client should attempt to read 4 bytes (the Type and Length)
// then attempt to read the rest of the data once the length is known.
void config_in_packet(struct usb_endpoint *ep) {
assert(ep->current_transfer);
struct usb_buffer *buffer = usb_current_in_packet_buffer(ep);
printf("config_in_packet %d\n", buffer->data_len);
assert(buffer->data_max >= 3);
const uint16_t transfer_length = ((tlv_header*) result_buffer)->length;
const uint16_t packet_length = MIN(buffer->data_max, transfer_length - read_offset);
memcpy(buffer->data, &result_buffer[read_offset], packet_length);
buffer->data_len = packet_length;
if (transfer_length >= read_offset) {
// Done
read_offset = 0;
// If the client reads again, return an error
tlv_header* result = ((tlv_header*) result_buffer);
result->type = NOK;
result->length = 4;
}
usb_grow_transfer(ep->current_transfer, 1);
usb_packet_done(ep);
}