Compare commits
No commits in common. "master" and "PM13" have entirely different histories.
|
@ -14,6 +14,7 @@ add_executable(ploopy_headphones
|
|||
run.c
|
||||
ringbuf.c
|
||||
i2s.c
|
||||
fix16.c
|
||||
bqf.c
|
||||
configuration_manager.c
|
||||
)
|
||||
|
@ -62,9 +63,6 @@ target_compile_definitions(ploopy_headphones PRIVATE
|
|||
GIT_HASH="${GIT_HASH}"
|
||||
|
||||
PICO_XOSC_STARTUP_DELAY_MULTIPLIER=64
|
||||
|
||||
# Performance, avoid calls to ____wrap___aeabi_lmul_veneer when doing 64bit multiplies
|
||||
PICO_INT64_OPS_IN_RAM=1
|
||||
)
|
||||
|
||||
pico_enable_stdio_usb(ploopy_headphones 0)
|
||||
|
|
|
@ -467,6 +467,21 @@ void bqf_highshelf_config(double fs, double f0, double dBgain, double Q,
|
|||
coefficients->a2 = fix3_28_from_dbl(a2);
|
||||
}
|
||||
|
||||
fix3_28_t bqf_transform(fix3_28_t x, bqf_coeff_t *coefficients, bqf_mem_t *memory) {
|
||||
fix3_28_t y = fix16_mul(coefficients->b0, x) -
|
||||
fix16_mul(coefficients->a1, memory->y_1) +
|
||||
fix16_mul(coefficients->b1, memory->x_1) -
|
||||
fix16_mul(coefficients->a2, memory->y_2) +
|
||||
fix16_mul(coefficients->b2, memory->x_2);
|
||||
|
||||
memory->x_2 = memory->x_1;
|
||||
memory->x_1 = x;
|
||||
memory->y_2 = memory->y_1;
|
||||
memory->y_1 = y;
|
||||
|
||||
return y;
|
||||
}
|
||||
|
||||
void bqf_memreset(bqf_mem_t *memory) {
|
||||
memory->x_1 = fix16_zero;
|
||||
memory->x_2 = fix16_zero;
|
||||
|
|
|
@ -41,9 +41,9 @@ typedef struct _bqf_mem_t {
|
|||
fix3_28_t y_2;
|
||||
} bqf_mem_t;
|
||||
|
||||
// More filters should be possible, but the config structure
|
||||
// might grow beyond the current 512 byte size.
|
||||
#define MAX_FILTER_STAGES 20
|
||||
// In reality we do not have enough CPU resource to run 8 filtering
|
||||
// stages without some optimisation.
|
||||
#define MAX_FILTER_STAGES 8
|
||||
extern int filter_stages;
|
||||
|
||||
extern bqf_coeff_t bqf_filters_left[MAX_FILTER_STAGES];
|
||||
|
@ -65,8 +65,7 @@ void bqf_peaking_config(double, double, double, double, bqf_coeff_t *);
|
|||
void bqf_lowshelf_config(double, double, double, double, bqf_coeff_t *);
|
||||
void bqf_highshelf_config(double, double, double, double, bqf_coeff_t *);
|
||||
|
||||
static inline fix3_28_t bqf_transform(fix3_28_t, bqf_coeff_t *, bqf_mem_t *);
|
||||
fix3_28_t bqf_transform(fix3_28_t, bqf_coeff_t *, bqf_mem_t *);
|
||||
void bqf_memreset(bqf_mem_t *);
|
||||
|
||||
#include "bqf.inl"
|
||||
#endif
|
||||
|
|
|
@ -1,36 +0,0 @@
|
|||
/**
|
||||
* Copyright 2022 Colin Lam, Ploopy Corporation
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* SPECIAL THANKS TO:
|
||||
* Robert Bristow-Johnson, a.k.a. RBJ
|
||||
* for his exceptional work on biquad formulae as applied to digital
|
||||
* audio filtering, summarised in his pamphlet, "Audio EQ Cookbook".
|
||||
*/
|
||||
|
||||
static inline fix3_28_t bqf_transform(fix3_28_t x, bqf_coeff_t *coefficients, bqf_mem_t *memory) {
|
||||
fix3_28_t y = fix16_mul(coefficients->b0, x) -
|
||||
fix16_mul(coefficients->a1, memory->y_1) +
|
||||
fix16_mul(coefficients->b1, memory->x_1) -
|
||||
fix16_mul(coefficients->a2, memory->y_2) +
|
||||
fix16_mul(coefficients->b2, memory->x_2);
|
||||
|
||||
memory->x_2 = memory->x_1;
|
||||
memory->x_1 = x;
|
||||
memory->y_2 = memory->y_1;
|
||||
memory->y_1 = y;
|
||||
|
||||
return y;
|
||||
}
|
|
@ -52,29 +52,16 @@ static const default_configuration default_config = {
|
|||
.set_configuration = { SET_CONFIGURATION, sizeof(default_config) },
|
||||
.filters = {
|
||||
.filter = { FILTER_CONFIGURATION, sizeof(default_config.filters) },
|
||||
.f1 = { PEAKING, {0}, 38.5, -21.0, 1.4 },
|
||||
.f2 = { PEAKING, {0}, 60, -6.7, 0.5 },
|
||||
.f3 = { LOWSHELF, {0}, 105, 2.0, 0.71 },
|
||||
.f4 = { PEAKING, {0}, 280, -3.5, 1.1 },
|
||||
.f5 = { PEAKING, {0}, 350, -1.6, 6.0 },
|
||||
.f6 = { PEAKING, {0}, 425, 7.8, 1.3 },
|
||||
.f7 = { PEAKING, {0}, 500, -2.0, 7.0 },
|
||||
.f8 = { PEAKING, {0}, 690, -5.5, 3.0 },
|
||||
.f9 = { PEAKING, {0}, 1000, -2.2, 5.0 },
|
||||
.f10 = { PEAKING, {0}, 1530, -4.0, 2.5 },
|
||||
.f11 = { PEAKING, {0}, 2250, 6.0, 2.0 },
|
||||
.f12 = { PEAKING, {0}, 3430, -12.2, 2.0 },
|
||||
.f13 = { PEAKING, {0}, 4800, 4.0, 2.0 },
|
||||
.f14 = { PEAKING, {0}, 6200, -15.0, 3.0 },
|
||||
.f15 = { HIGHSHELF, {0}, 12000, -3.0, 0.71 }
|
||||
.f1 = { PEAKING, {0}, 40, -20, 1.4 },
|
||||
.f2 = { LOWSHELF, {0}, 105, 2.5, 0.7 },
|
||||
.f3 = { PEAKING, {0}, 450, 7, 1.8 },
|
||||
.f4 = { PEAKING, {0}, 2100, 8, 3.0 },
|
||||
.f5 = { PEAKING, {0}, 3500, -7.5, 2.9 },
|
||||
.f6 = { PEAKING, {0}, 5200, 5.5, 3.0 },
|
||||
.f7 = { PEAKING, {0}, 6400, -19, 4.0 },
|
||||
.f8 = { PEAKING, {0}, 9000, 3.0, 2.0 }
|
||||
},
|
||||
.preprocessing = {
|
||||
.header = { PREPROCESSING_CONFIGURATION, sizeof(default_config.preprocessing) },
|
||||
-0.376265f, // pre-EQ gain of -4.1dB
|
||||
0.4125f, // post-EQ gain, set to ~3dB (1.4x, less the 1 that is added when config is applied)
|
||||
true,
|
||||
{0}
|
||||
}
|
||||
.preprocessing = { .header = { PREPROCESSING_CONFIGURATION, sizeof(default_config.preprocessing) }, -0.16f, true, {0} }
|
||||
};
|
||||
|
||||
// Grab the last 4k page of flash for our configuration strutures.
|
||||
|
@ -87,7 +74,7 @@ const uint8_t *user_configuration = (const uint8_t *) (XIP_BASE + USER_CONFIGURA
|
|||
* should handle merging configurations where, for example, only a new
|
||||
* filter_configuration_tlv was received.
|
||||
*/
|
||||
#define CFG_BUFFER_SIZE 512
|
||||
#define CFG_BUFFER_SIZE 256
|
||||
static uint8_t working_configuration[2][CFG_BUFFER_SIZE];
|
||||
static uint8_t inactive_working_configuration = 0;
|
||||
static uint8_t result_buffer[CFG_BUFFER_SIZE] = { U16_TO_U8S_LE(NOK), U16_TO_U8S_LE(0) };
|
||||
|
@ -96,13 +83,6 @@ static bool reload_config = false;
|
|||
static uint16_t write_offset = 0;
|
||||
static uint16_t read_offset = 0;
|
||||
|
||||
typedef enum {
|
||||
NormalOperation,
|
||||
SaveRequested,
|
||||
Saving
|
||||
} State;
|
||||
static State saveState = NormalOperation;
|
||||
|
||||
bool validate_filter_configuration(filter_configuration_tlv *filters)
|
||||
{
|
||||
if (filters->header.type != FILTER_CONFIGURATION) {
|
||||
|
@ -149,7 +129,7 @@ bool validate_filter_configuration(filter_configuration_tlv *filters)
|
|||
printf("Error! Not enough data left for filter6 (%d)\n", remaining);
|
||||
return false;
|
||||
}
|
||||
if (args->a0 == 0.0f) {
|
||||
if (args->a0 == 0.0) {
|
||||
printf("Error! The a0 co-efficient of an IIR filter must not be 0.\n");
|
||||
return false;
|
||||
}
|
||||
|
@ -202,7 +182,7 @@ void apply_filter_configuration(filter_configuration_tlv *filters) {
|
|||
uint32_t checksum = 0;
|
||||
for (int i = 0; i < sizeof(filter6) / 4; i++) checksum ^= ((uint32_t*) args)[i];
|
||||
if (checksum != bqf_filter_checksum[filter_stages]) {
|
||||
bqf_filters_left[filter_stages].a0 = fix16_one;
|
||||
bqf_filters_left[filter_stages].a0 = fix3_28_from_dbl(1.0);
|
||||
bqf_filters_left[filter_stages].a1 = fix3_28_from_dbl(args->a1/args->a0);
|
||||
bqf_filters_left[filter_stages].a2 = fix3_28_from_dbl(args->a2/args->a0);
|
||||
bqf_filters_left[filter_stages].b0 = fix3_28_from_dbl(args->b0/args->a0);
|
||||
|
@ -328,8 +308,7 @@ bool apply_configuration(tlv_header *config) {
|
|||
#ifndef TEST_TARGET
|
||||
case PREPROCESSING_CONFIGURATION: {
|
||||
preprocessing_configuration_tlv* preprocessing_config = (preprocessing_configuration_tlv*) tlv;
|
||||
preprocessing.preamp = fix3_28_from_flt(1.0f + preprocessing_config->preamp);
|
||||
preprocessing.postEQGain = fix3_28_from_flt(1.0f + preprocessing_config->postEQGain);
|
||||
preprocessing.preamp = fix3_28_from_dbl(1.0 + preprocessing_config->preamp);
|
||||
preprocessing.reverse_stereo = preprocessing_config->reverse_stereo;
|
||||
break;
|
||||
}
|
||||
|
@ -364,20 +343,16 @@ void load_config() {
|
|||
}
|
||||
|
||||
#ifndef TEST_TARGET
|
||||
bool __no_inline_not_in_flash_func(save_config)() {
|
||||
bool __no_inline_not_in_flash_func(save_configuration)() {
|
||||
const uint8_t active_configuration = inactive_working_configuration ? 0 : 1;
|
||||
tlv_header* config = (tlv_header*) working_configuration[active_configuration];
|
||||
|
||||
switch (saveState) {
|
||||
case SaveRequested:
|
||||
if (validate_configuration(config)) {
|
||||
/* Turn the DAC off so we don't make a huge noise when disrupting
|
||||
real time audio operation. */
|
||||
power_down_dac();
|
||||
|
||||
const size_t config_length = config->length - ((size_t)config->value - (size_t)config);
|
||||
// Write data to flash
|
||||
uint8_t flash_buffer[CFG_BUFFER_SIZE];
|
||||
uint8_t flash_buffer[FLASH_PAGE_SIZE];
|
||||
flash_header_tlv* flash_header = (flash_header_tlv*) flash_buffer;
|
||||
flash_header->header.type = FLASH_HEADER;
|
||||
flash_header->header.length = sizeof(flash_header_tlv) + config_length;
|
||||
|
@ -387,26 +362,13 @@ bool __no_inline_not_in_flash_func(save_config)() {
|
|||
|
||||
uint32_t ints = save_and_disable_interrupts();
|
||||
flash_range_erase(USER_CONFIGURATION_OFFSET, FLASH_SECTOR_SIZE);
|
||||
flash_range_program(USER_CONFIGURATION_OFFSET, flash_buffer, CFG_BUFFER_SIZE);
|
||||
flash_range_program(USER_CONFIGURATION_OFFSET, flash_buffer, FLASH_PAGE_SIZE);
|
||||
restore_interrupts(ints);
|
||||
saveState = Saving;
|
||||
|
||||
// Return true, so the caller skips processing audio
|
||||
power_up_dac();
|
||||
|
||||
return true;
|
||||
}
|
||||
// Validation failed, give up.
|
||||
saveState = NormalOperation;
|
||||
break;
|
||||
case Saving:
|
||||
/* Turn the DAC off so we don't make a huge noise when disrupting
|
||||
real time audio operation. */
|
||||
power_up_dac();
|
||||
saveState = NormalOperation;
|
||||
return false;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -432,14 +394,7 @@ bool process_cmd(tlv_header* cmd) {
|
|||
}
|
||||
break;
|
||||
case SAVE_CONFIGURATION: {
|
||||
if (cmd->length == 4) {
|
||||
saveState = SaveRequested;
|
||||
if (audio_state.interface == 0) {
|
||||
// The OS will configure the alternate "zero" interface when the device is not in use
|
||||
// in this sate we can write to flash now. Otherwise, defer the save until we get the next
|
||||
// usb packet.
|
||||
save_config();
|
||||
}
|
||||
if (cmd->length == 4 && save_configuration()) {
|
||||
result->type = OK;
|
||||
result->length = 4;
|
||||
return true;
|
||||
|
|
|
@ -52,7 +52,6 @@ void config_in_packet(struct usb_endpoint *ep);
|
|||
void config_out_packet(struct usb_endpoint *ep);
|
||||
void configuration_ep_on_cancel(struct usb_endpoint *ep);
|
||||
extern void load_config();
|
||||
extern bool save_config();
|
||||
extern void apply_config_changes();
|
||||
|
||||
#endif // CONFIGURATION_MANAGER_H
|
|
@ -17,8 +17,8 @@
|
|||
#include <stdint.h>
|
||||
|
||||
#define FLASH_MAGIC 0x2E8AFEDD
|
||||
#define CONFIG_VERSION 4
|
||||
#define MINIMUM_CONFIG_VERSION 4
|
||||
#define CONFIG_VERSION 2
|
||||
#define MINIMUM_CONFIG_VERSION 1
|
||||
|
||||
enum structure_types {
|
||||
// Commands/Responses, these are container TLVs. The Value will be a set of TLV structures.
|
||||
|
@ -53,20 +53,18 @@ typedef struct __attribute__((__packed__)) _tlv_header {
|
|||
typedef struct __attribute__((__packed__)) _filter2 {
|
||||
uint8_t type;
|
||||
uint8_t reserved[3];
|
||||
float f0;
|
||||
float Q;
|
||||
double f0;
|
||||
double Q;
|
||||
} filter2;
|
||||
|
||||
typedef struct __attribute__((__packed__)) _filter3 {
|
||||
uint8_t type;
|
||||
uint8_t reserved[3];
|
||||
float f0;
|
||||
float db_gain;
|
||||
float Q;
|
||||
double f0;
|
||||
double db_gain;
|
||||
double Q;
|
||||
} filter3;
|
||||
|
||||
// WARNING: We wont be able to support more than 8 of these filters
|
||||
// due to the config structure size.
|
||||
typedef struct __attribute__((__packed__)) _filter6 {
|
||||
uint8_t type;
|
||||
uint8_t reserved[3];
|
||||
|
@ -98,13 +96,9 @@ typedef struct __attribute__((__packed__)) _flash_header_tlv {
|
|||
const uint8_t tlvs[0];
|
||||
} flash_header_tlv;
|
||||
|
||||
/// @brief Holds values relating to processing surrounding the EQ calculation.
|
||||
typedef struct __attribute__((__packed__)) _preprocessing_configuration_tlv {
|
||||
tlv_header header;
|
||||
/// @brief Gain applied to input signal before EQ chain. Use to avoid clipping due to overflow in the biquad filters of the EQ.
|
||||
float preamp;
|
||||
/// @brief Gain applied to the output of the EQ chain. Used to set output volume.
|
||||
float postEQGain;
|
||||
double preamp;
|
||||
uint8_t reverse_stereo;
|
||||
uint8_t reserved[3];
|
||||
} preprocessing_configuration_tlv;
|
||||
|
@ -143,13 +137,6 @@ typedef struct __attribute__((__packed__)) _default_configuration {
|
|||
filter3 f6;
|
||||
filter3 f7;
|
||||
filter3 f8;
|
||||
filter3 f9;
|
||||
filter3 f10;
|
||||
filter3 f11;
|
||||
filter3 f12;
|
||||
filter3 f13;
|
||||
filter3 f14;
|
||||
filter3 f15;
|
||||
} filters;
|
||||
preprocessing_configuration_tlv preprocessing;
|
||||
} default_configuration;
|
||||
|
|
|
@ -25,25 +25,61 @@
|
|||
#include <limits.h>
|
||||
#include "fix16.h"
|
||||
|
||||
#ifdef USE_DOUBLE
|
||||
fix16_t fix16_from_s16sample(int16_t a) {
|
||||
return a;
|
||||
}
|
||||
|
||||
int16_t fix16_to_s16sample(fix16_t a) {
|
||||
// Handle rounding up front, adding one can cause an overflow/underflow
|
||||
if (a < 0) {
|
||||
a -= 0.5;
|
||||
} else {
|
||||
a += 0.5;
|
||||
}
|
||||
|
||||
// Saturate the value if an overflow has occurred
|
||||
if (a < SHRT_MIN) {
|
||||
return SHRT_MIN;
|
||||
}
|
||||
if (a < SHRT_MAX) {
|
||||
return SHRT_MAX;
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
fix16_t fix16_from_dbl(double a) {
|
||||
return a;
|
||||
}
|
||||
|
||||
double fix16_to_dbl(fix16_t a) {
|
||||
return a;
|
||||
}
|
||||
|
||||
fix16_t fix16_mul(fix16_t inArg0, fix16_t inArg1) {
|
||||
return inArg0 * inArg1;
|
||||
}
|
||||
#else
|
||||
|
||||
/// @brief Produces a fixed point number from a 16-bit signed integer, normalized to ]-1,1[.
|
||||
/// @param a Signed 16-bit integer.
|
||||
/// @return A fixed point number in Q3.28 format, with input normalized to ]-1,1[.
|
||||
static inline fix3_28_t norm_fix3_28_from_s16sample(int16_t a) {
|
||||
fix3_28_t norm_fix3_28_from_s16sample(int16_t a) {
|
||||
/* So, we're using a Q3.28 fixed point system here, and we want the incoming
|
||||
audio signal to be represented as a number between -1 and 1. To do this,
|
||||
we need the 16-bit value to map to the 28-bit right-of-decimal field in
|
||||
our fixed point number. 28-16 = 12 + the sign bit = 13, so we shift the
|
||||
incoming value by that much to covert it to the desired Q3.28 format and
|
||||
do the normalization all in one go.
|
||||
our fixed point number. 28-16 = 12, so we shift the incoming value by
|
||||
that much to covert it to the desired Q3.28 format and do the normalization
|
||||
all in one go.
|
||||
*/
|
||||
return (fix3_28_t)a << 13;
|
||||
return (fix3_28_t)a << 12;
|
||||
}
|
||||
|
||||
/// @brief Convert fixed point samples into signed integer. Used to convert
|
||||
/// calculated sample to one that the DAC can understand.
|
||||
/// @param a
|
||||
/// @return Signed 16-bit integer.
|
||||
static inline int32_t norm_fix3_28_to_s16sample(fix3_28_t a) {
|
||||
int16_t norm_fix3_28_to_s16sample(fix3_28_t a) {
|
||||
// Handle rounding up front, adding one can cause an overflow/underflow
|
||||
|
||||
// It's not clear exactly how this works, so we'll disable it for now.
|
||||
|
@ -56,29 +92,26 @@ static inline int32_t norm_fix3_28_to_s16sample(fix3_28_t a) {
|
|||
*/
|
||||
|
||||
// Saturate the value if an overflow has occurred
|
||||
uint32_t upper = (a >> 29);
|
||||
uint32_t upper = (a >> 30);
|
||||
if (a < 0) {
|
||||
if (~upper) {
|
||||
return 0xff800000;
|
||||
if (~upper)
|
||||
{
|
||||
return SHRT_MIN;
|
||||
}
|
||||
} else {
|
||||
if (upper) {
|
||||
return 0x00efffff;
|
||||
if (upper)
|
||||
{
|
||||
return SHRT_MAX;
|
||||
}
|
||||
}
|
||||
/* When we converted the USB audio sample to a fixed point number, we applied
|
||||
a normalization, or a gain of 1/65536. To convert it back, we can undo that
|
||||
by shifting it but we output 24bts, so the shift is reduced. */
|
||||
return (a >> 6);
|
||||
by shifting it back by the same amount we shifted it in the first place. */
|
||||
return (a >> 12);
|
||||
}
|
||||
|
||||
static inline fix3_28_t fix3_28_from_flt(float a) {
|
||||
float temp = a * fix16_one;
|
||||
temp += ((temp >= 0) ? 0.5f : -0.5f);
|
||||
return (fix3_28_t)temp;
|
||||
}
|
||||
|
||||
static inline fix3_28_t fix3_28_from_dbl(double a) {
|
||||
fix3_28_t fix3_28_from_dbl(double a) {
|
||||
double temp = a * fix16_one;
|
||||
temp += (double)((temp >= 0) ? 0.5f : -0.5f);
|
||||
return (fix3_28_t)temp;
|
||||
|
@ -88,22 +121,27 @@ static inline fix3_28_t fix3_28_from_dbl(double a) {
|
|||
/// @param inArg0 Q3.28 format fixed point number.
|
||||
/// @param inArg1 Q3.28 format fixed point number.
|
||||
/// @return A Q3.28 fixed point number that represents the truncated result of inArg0 x inArg1.
|
||||
static inline fix3_28_t fix16_mul(fix3_28_t inArg0, fix3_28_t inArg1) {
|
||||
int32_t A = (inArg0 >> 14), C = (inArg1 >> 14);
|
||||
uint32_t B = (inArg0 & 0x3FFF), D = (inArg1 & 0x3FFF);
|
||||
int32_t AC = A*C;
|
||||
int32_t AD_CB = A*D + C*B;
|
||||
int32_t product_hi = AC + (AD_CB >> 14);
|
||||
fix3_28_t fix16_mul(fix3_28_t inArg0, fix3_28_t inArg1) {
|
||||
const int64_t product = (int64_t)inArg0 * inArg1;
|
||||
|
||||
#if HANDLE_CARRY
|
||||
// Handle carry from lower bits to upper part of result.
|
||||
uint32_t BD = B*D;
|
||||
uint32_t ad_cb_temp = AD_CB << 14;
|
||||
uint32_t product_lo = BD + ad_cb_temp;
|
||||
/* Since we're expecting 2 Q3.28 numbers, the multiplication result should be a Q7.56 number.
|
||||
To bring this number back to the right order of magnitude, we need to shift
|
||||
it to the right by 28. */
|
||||
fix3_28_t result = product >> 28;
|
||||
|
||||
if (product_lo < BD)
|
||||
product_hi++;
|
||||
#endif
|
||||
|
||||
return product_hi;
|
||||
// Handle rounding where we are choppping off low order bits
|
||||
// Disabled for now, too much load. We get crackling when adjusting
|
||||
// the volume.
|
||||
#if 0
|
||||
if (product & 0x4000) {
|
||||
if (result >= 0) {
|
||||
result++;
|
||||
}
|
||||
else {
|
||||
result--;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
return result;
|
||||
}
|
||||
#endif
|
|
@ -25,6 +25,13 @@
|
|||
#include <stdbool.h>
|
||||
#include <inttypes.h>
|
||||
|
||||
// During development, it can be useful to run with real double values for reference.
|
||||
//#define USE_DOUBLE
|
||||
#ifdef USE_DOUBLE
|
||||
typedef double fix16_t;
|
||||
static const fix16_t fix16_zero = 0;
|
||||
static const fix16_t fix16_one = 1;
|
||||
#else
|
||||
|
||||
/// @brief Fixed point math type, in format Q3.28. One sign bit, 3 bits for left-of-decimal
|
||||
///and 28 for right-of-decimal. This arrangment works because we normalize the incoming USB
|
||||
|
@ -39,15 +46,15 @@ static const fix3_28_t fix16_one = 0x10000000;
|
|||
/// @brief Represents zero in fixed point world.
|
||||
static const fix3_28_t fix16_zero = 0x00000000;
|
||||
|
||||
static inline fix3_28_t norm_fix3_28_from_s16sample(int16_t);
|
||||
|
||||
static inline int32_t norm_fix3_28_to_s16sample(fix3_28_t);
|
||||
|
||||
static inline fix3_28_t fix3_28_from_flt(float);
|
||||
|
||||
static inline fix3_28_t fix3_28_from_dbl(double);
|
||||
|
||||
static inline fix3_28_t fix16_mul(fix3_28_t, fix3_28_t);
|
||||
|
||||
#include "fix16.inl"
|
||||
#endif
|
||||
|
||||
|
||||
fix3_28_t norm_fix3_28_from_s16sample(int16_t);
|
||||
|
||||
int16_t norm_fix3_28_to_s16sample(fix3_28_t);
|
||||
|
||||
fix3_28_t fix3_28_from_dbl(double);
|
||||
|
||||
fix3_28_t fix16_mul(fix3_28_t, fix3_28_t);
|
||||
|
||||
#endif
|
|
@ -52,12 +52,10 @@ static uint8_t *userbuf;
|
|||
audio_state_config audio_state = {
|
||||
.freq = 48000,
|
||||
.de_emphasis_frequency = 0x1, // 48khz
|
||||
.interface = 0
|
||||
};
|
||||
|
||||
preprocessing_config preprocessing = {
|
||||
.preamp = fix16_one,
|
||||
.postEQGain = fix16_one,
|
||||
.reverse_stereo = false
|
||||
};
|
||||
|
||||
|
@ -120,24 +118,12 @@ static void update_volume()
|
|||
// PCM data into I2S data that gets shipped out to the PCM3060. It really
|
||||
// belongs with the other USB-related code due to its utter indecipherability,
|
||||
// but it's placed here to emphasize its importance.
|
||||
static void __no_inline_not_in_flash_func(_as_audio_packet)(struct usb_endpoint *ep) {
|
||||
static void _as_audio_packet(struct usb_endpoint *ep) {
|
||||
struct usb_buffer *usb_buffer = usb_current_out_packet_buffer(ep);
|
||||
int16_t *in = (int16_t *) usb_buffer->data;
|
||||
int32_t *out = (int32_t *) userbuf;
|
||||
int samples = usb_buffer->data_len / 2;
|
||||
|
||||
// Make sure core 1 is ready for us.
|
||||
multicore_fifo_pop_blocking();
|
||||
|
||||
if (save_config()) {
|
||||
// Skip processing while we are writing to flash
|
||||
multicore_fifo_push_blocking(CORE0_ABORTED);
|
||||
// keep on truckin'
|
||||
usb_grow_transfer(ep->current_transfer, 1);
|
||||
usb_packet_done(ep);
|
||||
return;
|
||||
}
|
||||
|
||||
if (preprocessing.reverse_stereo) {
|
||||
for (int i = 0; i < samples; i+=2) {
|
||||
out[i] = in[i+1];
|
||||
|
@ -149,44 +135,36 @@ static void __no_inline_not_in_flash_func(_as_audio_packet)(struct usb_endpoint
|
|||
out[i] = in[i];
|
||||
}
|
||||
|
||||
// Make sure core 1 is ready for us.
|
||||
multicore_fifo_pop_blocking();
|
||||
multicore_fifo_push_blocking(CORE0_READY);
|
||||
multicore_fifo_push_blocking(samples);
|
||||
|
||||
|
||||
for (int j = 0; j < filter_stages; j++) {
|
||||
// Left channel filter
|
||||
for (int i = 0; i < samples; i += 2) {
|
||||
fix3_28_t x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preprocessing.preamp);
|
||||
for (int j = 0; j < filter_stages; j++) {
|
||||
|
||||
x_f16 = bqf_transform(x_f16, &bqf_filters_left[j],
|
||||
&bqf_filters_mem_left[j]);
|
||||
}
|
||||
|
||||
/* Apply post-EQ gain. */
|
||||
x_f16 = fix16_mul( x_f16, preprocessing.postEQGain);
|
||||
|
||||
out[i] = (int32_t) norm_fix3_28_to_s16sample(x_f16);
|
||||
}
|
||||
}
|
||||
|
||||
// Block until core 1 has finished transforming the data
|
||||
uint32_t ready = multicore_fifo_pop_blocking();
|
||||
multicore_fifo_push_blocking(CORE0_READY);
|
||||
|
||||
// Update the volume if required. We do this from core1 as
|
||||
// core0 is more heavily loaded, doing this from core0 can
|
||||
// lead to audio crackling.
|
||||
update_volume();
|
||||
|
||||
// Update filters if required
|
||||
apply_config_changes();
|
||||
|
||||
// keep on truckin'
|
||||
usb_grow_transfer(ep->current_transfer, 1);
|
||||
usb_packet_done(ep);
|
||||
}
|
||||
|
||||
void __no_inline_not_in_flash_func(core1_entry)() {
|
||||
void core1_entry() {
|
||||
uint8_t *userbuf = (uint8_t *) multicore_fifo_pop_blocking();
|
||||
int32_t *out = (int32_t *) userbuf;
|
||||
int limit_counter = 100;
|
||||
|
||||
// Signal that the thread has started
|
||||
multicore_fifo_push_blocking(CORE1_READY);
|
||||
|
@ -197,23 +175,33 @@ void __no_inline_not_in_flash_func(core1_entry)() {
|
|||
|
||||
// Block until the userbuf is filled with data
|
||||
uint32_t ready = multicore_fifo_pop_blocking();
|
||||
if (ready == CORE0_ABORTED) continue;
|
||||
while (ready != CORE0_READY)
|
||||
ready = multicore_fifo_pop_blocking();
|
||||
|
||||
const uint32_t samples = multicore_fifo_pop_blocking();
|
||||
|
||||
/* Right channel EQ. */
|
||||
for (int i = 1; i < samples; i += 2) {
|
||||
/* Apply EQ pre-filter gain to avoid clipping. */
|
||||
fix3_28_t x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preprocessing.preamp);
|
||||
/* Apply the biquad filters one by one. */
|
||||
for (int j = 0; j < filter_stages; j++) {
|
||||
for (int i = 1; i < samples; i += 2) {
|
||||
fix3_28_t x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preprocessing.preamp);
|
||||
|
||||
x_f16 = bqf_transform(x_f16, &bqf_filters_right[j],
|
||||
&bqf_filters_mem_right[j]);
|
||||
}
|
||||
/* Apply post-EQ gain. */
|
||||
x_f16 = fix16_mul( x_f16, preprocessing.postEQGain);
|
||||
|
||||
out[i] = (int32_t) norm_fix3_28_to_s16sample(x_f16);
|
||||
out[i] = (int16_t) norm_fix3_28_to_s16sample(x_f16);
|
||||
}
|
||||
}
|
||||
|
||||
// Update the volume and filter configs if required. We do this from
|
||||
// core1 as core0 is more heavily loaded, doing this from core0 can
|
||||
// lead to audio crackling.
|
||||
// Use of a counter reduces the amount of crackling when changing
|
||||
// volume.
|
||||
if (limit_counter != 0)
|
||||
limit_counter--;
|
||||
else {
|
||||
limit_counter = 100;
|
||||
update_volume();
|
||||
apply_config_changes();
|
||||
}
|
||||
|
||||
// Signal to core 0 that the data has all been transformed
|
||||
|
@ -265,7 +253,7 @@ void setup() {
|
|||
// The PCM3060 supports standard mode (100kbps) or fast mode (400kbps)
|
||||
// we run in fast mode so we dont block the core for too long while
|
||||
// updating the volume.
|
||||
i2c_init(i2c0, 400000);
|
||||
i2c_init(i2c0, 100000);
|
||||
gpio_set_function(PCM3060_SDA_PIN, GPIO_FUNC_I2C);
|
||||
gpio_set_function(PCM3060_SCL_PIN, GPIO_FUNC_I2C);
|
||||
gpio_pull_up(PCM3060_SDA_PIN);
|
||||
|
@ -291,9 +279,9 @@ void setup() {
|
|||
// Same here, pal. Hands off.
|
||||
sleep_ms(100);
|
||||
|
||||
// Set data format to 24 bit right justified, MSB first
|
||||
// Set data format to 16 bit right justified, MSB first
|
||||
buf[0] = 67; // register addr
|
||||
buf[1] = 0x02; // data
|
||||
buf[1] = 0x03; // data
|
||||
i2c_write_blocking(i2c0, PCM_I2C_ADDR, buf, 2, false);
|
||||
|
||||
i2s_write_obj.sck_pin = PCM3060_DAC_SCK_PIN;
|
||||
|
@ -309,7 +297,6 @@ void setup() {
|
|||
* IF YOU DO, YOU COULD BLOW UP YOUR HARDWARE! *
|
||||
* YOU WERE WARNED!!!!!!!!!!!!!!!! *
|
||||
****************************************************************************/
|
||||
// TODO: roundf will be much faster than round, but it might mess with timings
|
||||
void configure_neg_switch_pwm() {
|
||||
gpio_set_function(NEG_SWITCH_PWM_PIN, GPIO_FUNC_PWM);
|
||||
uint slice_num = pwm_gpio_to_slice_num(NEG_SWITCH_PWM_PIN);
|
||||
|
@ -770,7 +757,6 @@ static const struct usb_transfer_type _audio_cmd_transfer_type = {
|
|||
|
||||
static bool as_set_alternate(struct usb_interface *interface, uint alt) {
|
||||
assert(interface == &as_op_interface);
|
||||
audio_state.interface = alt;
|
||||
switch (alt) {
|
||||
case 0: power_down_dac(); return true;
|
||||
case 1: power_up_dac(); return true;
|
||||
|
|
|
@ -76,7 +76,6 @@ typedef struct _audio_state_config {
|
|||
int16_t _target_pcm3060_registers;
|
||||
};
|
||||
int16_t pcm3060_registers;
|
||||
int8_t interface;
|
||||
} audio_state_config;
|
||||
extern audio_state_config audio_state;
|
||||
|
||||
|
@ -111,8 +110,6 @@ typedef struct _audio_device_config {
|
|||
|
||||
typedef struct _preprocessing_config {
|
||||
fix3_28_t preamp;
|
||||
/// @brief Apply this gain after applying EQ, to set output volume without causing overflow in the EQ calculations.
|
||||
fix3_28_t postEQGain;
|
||||
int reverse_stereo;
|
||||
} preprocessing_config;
|
||||
|
||||
|
@ -150,7 +147,6 @@ static char *descriptor_strings[] = {
|
|||
#define SAMPLING_FREQ (CODEC_FREQ / 192)
|
||||
|
||||
#define CORE0_READY 19813219
|
||||
#define CORE0_ABORTED 91231891
|
||||
#define CORE1_READY 72965426
|
||||
|
||||
/*****************************************************************************
|
||||
|
|
|
@ -6,6 +6,7 @@ set(CMAKE_CXX_STANDARD 17)
|
|||
|
||||
add_executable(filter_test
|
||||
filter_test.c
|
||||
../code/fix16.c
|
||||
../code/bqf.c
|
||||
../code/configuration_manager.c
|
||||
)
|
||||
|
|
|
@ -17,7 +17,7 @@ Run `filter_test` to process the PCM samples. The `filter_test` program takes tw
|
|||
You can listen to the PCM files using ffplay (which is usually included with ffmpeg):
|
||||
|
||||
```
|
||||
ffplay -f s24le -ar 48000 -ac 2 output.pcm
|
||||
ffplay -f s16le -ar 48000 -ac 2 output.pcm
|
||||
```
|
||||
|
||||
If there are no obvious problems, go ahead and flash your firmware.
|
||||
|
|
|
@ -32,7 +32,7 @@ int main(int argc, char* argv[])
|
|||
// we dont need to store the whole input and output files in memory.
|
||||
int samples = input_size / 2;
|
||||
int16_t *in = (int16_t *) calloc(samples, sizeof(int16_t));
|
||||
int32_t *out = (int32_t *) calloc(samples, sizeof(int32_t));
|
||||
int16_t *out = (int16_t *) calloc(samples, sizeof(int16_t));
|
||||
|
||||
fread(in, samples, sizeof(int16_t), input);
|
||||
fclose(input);
|
||||
|
@ -54,39 +54,31 @@ int main(int argc, char* argv[])
|
|||
out[i] = in[i];
|
||||
}
|
||||
|
||||
const fix3_28_t preamp = fix3_28_from_flt(0.92f);
|
||||
|
||||
for (int j = 0; j < filter_stages; j++)
|
||||
{
|
||||
for (int i = 0; i < samples; i ++)
|
||||
{
|
||||
// Left channel filter
|
||||
fix3_28_t x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preamp);
|
||||
fix16_t x_f16 = fix16_from_s16sample((int16_t) out[i]);
|
||||
|
||||
for (int j = 0; j < filter_stages; j++)
|
||||
{
|
||||
x_f16 = bqf_transform(x_f16, &bqf_filters_left[j],
|
||||
&bqf_filters_mem_left[j]);
|
||||
}
|
||||
|
||||
out[i] = (int32_t) norm_fix3_28_to_s16sample(x_f16);
|
||||
out[i] = (int32_t) fix16_to_s16sample(x_f16);
|
||||
|
||||
// Right channel filter
|
||||
i++;
|
||||
x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preamp);
|
||||
x_f16 = fix16_from_s16sample((int16_t) out[i]);
|
||||
|
||||
for (int j = 0; j < filter_stages; j++)
|
||||
{
|
||||
x_f16 = bqf_transform(x_f16, &bqf_filters_right[j],
|
||||
&bqf_filters_mem_right[j]);
|
||||
}
|
||||
|
||||
out[i] = (int32_t) norm_fix3_28_to_s16sample(x_f16);
|
||||
//printf("%08x\n", out[i]);
|
||||
out[i] = (int16_t) fix16_to_s16sample(x_f16);
|
||||
}
|
||||
}
|
||||
|
||||
// Write out the processed audio.
|
||||
for (int i=0; i<samples; i++) {
|
||||
fwrite(&out[i], 3, sizeof(int8_t), output);
|
||||
}
|
||||
fwrite(out, samples, sizeof(int16_t), output);
|
||||
fclose(output);
|
||||
|
||||
free(in);
|
||||
|
|
Loading…
Reference in New Issue