Compare commits

..

No commits in common. "master" and "PM11" have entirely different histories.
master ... PM11

17 changed files with 185 additions and 260 deletions

View File

@ -14,6 +14,7 @@ add_executable(ploopy_headphones
run.c
ringbuf.c
i2s.c
fix16.c
bqf.c
configuration_manager.c
)
@ -62,9 +63,6 @@ target_compile_definitions(ploopy_headphones PRIVATE
GIT_HASH="${GIT_HASH}"
PICO_XOSC_STARTUP_DELAY_MULTIPLIER=64
# Performance, avoid calls to ____wrap___aeabi_lmul_veneer when doing 64bit multiplies
PICO_INT64_OPS_IN_RAM=1
)
pico_enable_stdio_usb(ploopy_headphones 0)

View File

@ -467,6 +467,21 @@ void bqf_highshelf_config(double fs, double f0, double dBgain, double Q,
coefficients->a2 = fix3_28_from_dbl(a2);
}
fix3_28_t bqf_transform(fix3_28_t x, bqf_coeff_t *coefficients, bqf_mem_t *memory) {
fix3_28_t y = fix16_mul(coefficients->b0, x) -
fix16_mul(coefficients->a1, memory->y_1) +
fix16_mul(coefficients->b1, memory->x_1) -
fix16_mul(coefficients->a2, memory->y_2) +
fix16_mul(coefficients->b2, memory->x_2);
memory->x_2 = memory->x_1;
memory->x_1 = x;
memory->y_2 = memory->y_1;
memory->y_1 = y;
return y;
}
void bqf_memreset(bqf_mem_t *memory) {
memory->x_1 = fix16_zero;
memory->x_2 = fix16_zero;

View File

@ -41,9 +41,9 @@ typedef struct _bqf_mem_t {
fix3_28_t y_2;
} bqf_mem_t;
// More filters should be possible, but the config structure
// might grow beyond the current 512 byte size.
#define MAX_FILTER_STAGES 20
// In reality we do not have enough CPU resource to run 8 filtering
// stages without some optimisation.
#define MAX_FILTER_STAGES 8
extern int filter_stages;
extern bqf_coeff_t bqf_filters_left[MAX_FILTER_STAGES];
@ -65,8 +65,7 @@ void bqf_peaking_config(double, double, double, double, bqf_coeff_t *);
void bqf_lowshelf_config(double, double, double, double, bqf_coeff_t *);
void bqf_highshelf_config(double, double, double, double, bqf_coeff_t *);
static inline fix3_28_t bqf_transform(fix3_28_t, bqf_coeff_t *, bqf_mem_t *);
fix3_28_t bqf_transform(fix3_28_t, bqf_coeff_t *, bqf_mem_t *);
void bqf_memreset(bqf_mem_t *);
#include "bqf.inl"
#endif

View File

@ -1,36 +0,0 @@
/**
* Copyright 2022 Colin Lam, Ploopy Corporation
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* SPECIAL THANKS TO:
* Robert Bristow-Johnson, a.k.a. RBJ
* for his exceptional work on biquad formulae as applied to digital
* audio filtering, summarised in his pamphlet, "Audio EQ Cookbook".
*/
static inline fix3_28_t bqf_transform(fix3_28_t x, bqf_coeff_t *coefficients, bqf_mem_t *memory) {
fix3_28_t y = fix16_mul(coefficients->b0, x) -
fix16_mul(coefficients->a1, memory->y_1) +
fix16_mul(coefficients->b1, memory->x_1) -
fix16_mul(coefficients->a2, memory->y_2) +
fix16_mul(coefficients->b2, memory->x_2);
memory->x_2 = memory->x_1;
memory->x_1 = x;
memory->y_2 = memory->y_1;
memory->y_1 = y;
return y;
}

View File

@ -52,29 +52,13 @@ static const default_configuration default_config = {
.set_configuration = { SET_CONFIGURATION, sizeof(default_config) },
.filters = {
.filter = { FILTER_CONFIGURATION, sizeof(default_config.filters) },
.f1 = { PEAKING, {0}, 38.5, -21.0, 1.4 },
.f2 = { PEAKING, {0}, 60, -6.7, 0.5 },
.f3 = { LOWSHELF, {0}, 105, 2.0, 0.71 },
.f4 = { PEAKING, {0}, 280, -3.5, 1.1 },
.f5 = { PEAKING, {0}, 350, -1.6, 6.0 },
.f6 = { PEAKING, {0}, 425, 7.8, 1.3 },
.f7 = { PEAKING, {0}, 500, -2.0, 7.0 },
.f8 = { PEAKING, {0}, 690, -5.5, 3.0 },
.f9 = { PEAKING, {0}, 1000, -2.2, 5.0 },
.f10 = { PEAKING, {0}, 1530, -4.0, 2.5 },
.f11 = { PEAKING, {0}, 2250, 6.0, 2.0 },
.f12 = { PEAKING, {0}, 3430, -12.2, 2.0 },
.f13 = { PEAKING, {0}, 4800, 4.0, 2.0 },
.f14 = { PEAKING, {0}, 6200, -15.0, 3.0 },
.f15 = { HIGHSHELF, {0}, 12000, -3.0, 0.71 }
.f1 = { PEAKING, {0}, 38, -19, 0.9 },
.f2 = { LOWSHELF, {0}, 2900, 2, 0.7 },
.f3 = { PEAKING, {0}, 430, 3, 3.5 },
.f4 = { HIGHSHELF, {0}, 8400, 2, 0.7 },
.f5 = { PEAKING, {0}, 4800, 3, 5 }
},
.preprocessing = {
.header = { PREPROCESSING_CONFIGURATION, sizeof(default_config.preprocessing) },
-0.376265f, // pre-EQ gain of -4.1dB
0.4125f, // post-EQ gain, set to ~3dB (1.4x, less the 1 that is added when config is applied)
true,
{0}
}
.preprocessing = { .header = { PREPROCESSING_CONFIGURATION, sizeof(default_config.preprocessing) }, -0.2f, false, {0} }
};
// Grab the last 4k page of flash for our configuration strutures.
@ -87,7 +71,7 @@ const uint8_t *user_configuration = (const uint8_t *) (XIP_BASE + USER_CONFIGURA
* should handle merging configurations where, for example, only a new
* filter_configuration_tlv was received.
*/
#define CFG_BUFFER_SIZE 512
#define CFG_BUFFER_SIZE 256
static uint8_t working_configuration[2][CFG_BUFFER_SIZE];
static uint8_t inactive_working_configuration = 0;
static uint8_t result_buffer[CFG_BUFFER_SIZE] = { U16_TO_U8S_LE(NOK), U16_TO_U8S_LE(0) };
@ -96,13 +80,6 @@ static bool reload_config = false;
static uint16_t write_offset = 0;
static uint16_t read_offset = 0;
typedef enum {
NormalOperation,
SaveRequested,
Saving
} State;
static State saveState = NormalOperation;
bool validate_filter_configuration(filter_configuration_tlv *filters)
{
if (filters->header.type != FILTER_CONFIGURATION) {
@ -149,7 +126,7 @@ bool validate_filter_configuration(filter_configuration_tlv *filters)
printf("Error! Not enough data left for filter6 (%d)\n", remaining);
return false;
}
if (args->a0 == 0.0f) {
if (args->a0 == 0.0) {
printf("Error! The a0 co-efficient of an IIR filter must not be 0.\n");
return false;
}
@ -202,7 +179,7 @@ void apply_filter_configuration(filter_configuration_tlv *filters) {
uint32_t checksum = 0;
for (int i = 0; i < sizeof(filter6) / 4; i++) checksum ^= ((uint32_t*) args)[i];
if (checksum != bqf_filter_checksum[filter_stages]) {
bqf_filters_left[filter_stages].a0 = fix16_one;
bqf_filters_left[filter_stages].a0 = fix3_28_from_dbl(1.0);
bqf_filters_left[filter_stages].a1 = fix3_28_from_dbl(args->a1/args->a0);
bqf_filters_left[filter_stages].a2 = fix3_28_from_dbl(args->a2/args->a0);
bqf_filters_left[filter_stages].b0 = fix3_28_from_dbl(args->b0/args->a0);
@ -328,8 +305,7 @@ bool apply_configuration(tlv_header *config) {
#ifndef TEST_TARGET
case PREPROCESSING_CONFIGURATION: {
preprocessing_configuration_tlv* preprocessing_config = (preprocessing_configuration_tlv*) tlv;
preprocessing.preamp = fix3_28_from_flt(1.0f + preprocessing_config->preamp);
preprocessing.postEQGain = fix3_28_from_flt(1.0f + preprocessing_config->postEQGain);
preprocessing.preamp = fix3_28_from_dbl(1.0 + preprocessing_config->preamp);
preprocessing.reverse_stereo = preprocessing_config->reverse_stereo;
break;
}
@ -364,20 +340,16 @@ void load_config() {
}
#ifndef TEST_TARGET
bool __no_inline_not_in_flash_func(save_config)() {
bool __no_inline_not_in_flash_func(save_configuration)() {
const uint8_t active_configuration = inactive_working_configuration ? 0 : 1;
tlv_header* config = (tlv_header*) working_configuration[active_configuration];
switch (saveState) {
case SaveRequested:
if (validate_configuration(config)) {
/* Turn the DAC off so we don't make a huge noise when disrupting
real time audio operation. */
power_down_dac();
const size_t config_length = config->length - ((size_t)config->value - (size_t)config);
// Write data to flash
uint8_t flash_buffer[CFG_BUFFER_SIZE];
uint8_t flash_buffer[FLASH_PAGE_SIZE];
flash_header_tlv* flash_header = (flash_header_tlv*) flash_buffer;
flash_header->header.type = FLASH_HEADER;
flash_header->header.length = sizeof(flash_header_tlv) + config_length;
@ -387,26 +359,13 @@ bool __no_inline_not_in_flash_func(save_config)() {
uint32_t ints = save_and_disable_interrupts();
flash_range_erase(USER_CONFIGURATION_OFFSET, FLASH_SECTOR_SIZE);
flash_range_program(USER_CONFIGURATION_OFFSET, flash_buffer, CFG_BUFFER_SIZE);
flash_range_program(USER_CONFIGURATION_OFFSET, flash_buffer, FLASH_PAGE_SIZE);
restore_interrupts(ints);
saveState = Saving;
// Return true, so the caller skips processing audio
power_up_dac();
return true;
}
// Validation failed, give up.
saveState = NormalOperation;
break;
case Saving:
/* Turn the DAC off so we don't make a huge noise when disrupting
real time audio operation. */
power_up_dac();
saveState = NormalOperation;
return false;
default:
break;
}
return false;
}
@ -432,14 +391,7 @@ bool process_cmd(tlv_header* cmd) {
}
break;
case SAVE_CONFIGURATION: {
if (cmd->length == 4) {
saveState = SaveRequested;
if (audio_state.interface == 0) {
// The OS will configure the alternate "zero" interface when the device is not in use
// in this sate we can write to flash now. Otherwise, defer the save until we get the next
// usb packet.
save_config();
}
if (cmd->length == 4 && save_configuration()) {
result->type = OK;
result->length = 4;
return true;

View File

@ -52,7 +52,6 @@ void config_in_packet(struct usb_endpoint *ep);
void config_out_packet(struct usb_endpoint *ep);
void configuration_ep_on_cancel(struct usb_endpoint *ep);
extern void load_config();
extern bool save_config();
extern void apply_config_changes();
#endif // CONFIGURATION_MANAGER_H

View File

@ -17,8 +17,8 @@
#include <stdint.h>
#define FLASH_MAGIC 0x2E8AFEDD
#define CONFIG_VERSION 4
#define MINIMUM_CONFIG_VERSION 4
#define CONFIG_VERSION 2
#define MINIMUM_CONFIG_VERSION 1
enum structure_types {
// Commands/Responses, these are container TLVs. The Value will be a set of TLV structures.
@ -53,20 +53,18 @@ typedef struct __attribute__((__packed__)) _tlv_header {
typedef struct __attribute__((__packed__)) _filter2 {
uint8_t type;
uint8_t reserved[3];
float f0;
float Q;
double f0;
double Q;
} filter2;
typedef struct __attribute__((__packed__)) _filter3 {
uint8_t type;
uint8_t reserved[3];
float f0;
float db_gain;
float Q;
double f0;
double db_gain;
double Q;
} filter3;
// WARNING: We wont be able to support more than 8 of these filters
// due to the config structure size.
typedef struct __attribute__((__packed__)) _filter6 {
uint8_t type;
uint8_t reserved[3];
@ -98,13 +96,9 @@ typedef struct __attribute__((__packed__)) _flash_header_tlv {
const uint8_t tlvs[0];
} flash_header_tlv;
/// @brief Holds values relating to processing surrounding the EQ calculation.
typedef struct __attribute__((__packed__)) _preprocessing_configuration_tlv {
tlv_header header;
/// @brief Gain applied to input signal before EQ chain. Use to avoid clipping due to overflow in the biquad filters of the EQ.
float preamp;
/// @brief Gain applied to the output of the EQ chain. Used to set output volume.
float postEQGain;
double preamp;
uint8_t reverse_stereo;
uint8_t reserved[3];
} preprocessing_configuration_tlv;
@ -140,16 +134,6 @@ typedef struct __attribute__((__packed__)) _default_configuration {
filter3 f3;
filter3 f4;
filter3 f5;
filter3 f6;
filter3 f7;
filter3 f8;
filter3 f9;
filter3 f10;
filter3 f11;
filter3 f12;
filter3 f13;
filter3 f14;
filter3 f15;
} filters;
preprocessing_configuration_tlv preprocessing;
} default_configuration;

View File

@ -25,25 +25,61 @@
#include <limits.h>
#include "fix16.h"
#ifdef USE_DOUBLE
fix16_t fix16_from_s16sample(int16_t a) {
return a;
}
int16_t fix16_to_s16sample(fix16_t a) {
// Handle rounding up front, adding one can cause an overflow/underflow
if (a < 0) {
a -= 0.5;
} else {
a += 0.5;
}
// Saturate the value if an overflow has occurred
if (a < SHRT_MIN) {
return SHRT_MIN;
}
if (a < SHRT_MAX) {
return SHRT_MAX;
}
return a;
}
fix16_t fix16_from_dbl(double a) {
return a;
}
double fix16_to_dbl(fix16_t a) {
return a;
}
fix16_t fix16_mul(fix16_t inArg0, fix16_t inArg1) {
return inArg0 * inArg1;
}
#else
/// @brief Produces a fixed point number from a 16-bit signed integer, normalized to ]-1,1[.
/// @param a Signed 16-bit integer.
/// @return A fixed point number in Q3.28 format, with input normalized to ]-1,1[.
static inline fix3_28_t norm_fix3_28_from_s16sample(int16_t a) {
fix3_28_t norm_fix3_28_from_s16sample(int16_t a) {
/* So, we're using a Q3.28 fixed point system here, and we want the incoming
audio signal to be represented as a number between -1 and 1. To do this,
we need the 16-bit value to map to the 28-bit right-of-decimal field in
our fixed point number. 28-16 = 12 + the sign bit = 13, so we shift the
incoming value by that much to covert it to the desired Q3.28 format and
do the normalization all in one go.
our fixed point number. 28-16 = 12, so we shift the incoming value by
that much to covert it to the desired Q3.28 format and do the normalization
all in one go.
*/
return (fix3_28_t)a << 13;
return (fix3_28_t)a << 12;
}
/// @brief Convert fixed point samples into signed integer. Used to convert
/// calculated sample to one that the DAC can understand.
/// @param a
/// @return Signed 16-bit integer.
static inline int32_t norm_fix3_28_to_s16sample(fix3_28_t a) {
int16_t norm_fix3_28_to_s16sample(fix3_28_t a) {
// Handle rounding up front, adding one can cause an overflow/underflow
// It's not clear exactly how this works, so we'll disable it for now.
@ -56,29 +92,26 @@ static inline int32_t norm_fix3_28_to_s16sample(fix3_28_t a) {
*/
// Saturate the value if an overflow has occurred
uint32_t upper = (a >> 29);
uint32_t upper = (a >> 30);
if (a < 0) {
if (~upper) {
return 0xff800000;
if (~upper)
{
return SHRT_MIN;
}
} else {
if (upper) {
return 0x00efffff;
if (upper)
{
return SHRT_MAX;
}
}
/* When we converted the USB audio sample to a fixed point number, we applied
a normalization, or a gain of 1/65536. To convert it back, we can undo that
by shifting it but we output 24bts, so the shift is reduced. */
return (a >> 6);
by shifting it back by the same amount we shifted it in the first place. */
return (a >> 12);
}
static inline fix3_28_t fix3_28_from_flt(float a) {
float temp = a * fix16_one;
temp += ((temp >= 0) ? 0.5f : -0.5f);
return (fix3_28_t)temp;
}
static inline fix3_28_t fix3_28_from_dbl(double a) {
fix3_28_t fix3_28_from_dbl(double a) {
double temp = a * fix16_one;
temp += (double)((temp >= 0) ? 0.5f : -0.5f);
return (fix3_28_t)temp;
@ -88,22 +121,27 @@ static inline fix3_28_t fix3_28_from_dbl(double a) {
/// @param inArg0 Q3.28 format fixed point number.
/// @param inArg1 Q3.28 format fixed point number.
/// @return A Q3.28 fixed point number that represents the truncated result of inArg0 x inArg1.
static inline fix3_28_t fix16_mul(fix3_28_t inArg0, fix3_28_t inArg1) {
int32_t A = (inArg0 >> 14), C = (inArg1 >> 14);
uint32_t B = (inArg0 & 0x3FFF), D = (inArg1 & 0x3FFF);
int32_t AC = A*C;
int32_t AD_CB = A*D + C*B;
int32_t product_hi = AC + (AD_CB >> 14);
fix3_28_t fix16_mul(fix3_28_t inArg0, fix3_28_t inArg1) {
const int64_t product = (int64_t)inArg0 * inArg1;
#if HANDLE_CARRY
// Handle carry from lower bits to upper part of result.
uint32_t BD = B*D;
uint32_t ad_cb_temp = AD_CB << 14;
uint32_t product_lo = BD + ad_cb_temp;
/* Since we're expecting 2 Q3.28 numbers, the multiplication result should be a Q7.56 number.
To bring this number back to the right order of magnitude, we need to shift
it to the right by 28. */
fix3_28_t result = product >> 28;
if (product_lo < BD)
product_hi++;
#endif
return product_hi;
// Handle rounding where we are choppping off low order bits
// Disabled for now, too much load. We get crackling when adjusting
// the volume.
#if 0
if (product & 0x4000) {
if (result >= 0) {
result++;
}
else {
result--;
}
}
#endif
return result;
}
#endif

View File

@ -25,6 +25,13 @@
#include <stdbool.h>
#include <inttypes.h>
// During development, it can be useful to run with real double values for reference.
//#define USE_DOUBLE
#ifdef USE_DOUBLE
typedef double fix16_t;
static const fix16_t fix16_zero = 0;
static const fix16_t fix16_one = 1;
#else
/// @brief Fixed point math type, in format Q3.28. One sign bit, 3 bits for left-of-decimal
///and 28 for right-of-decimal. This arrangment works because we normalize the incoming USB
@ -39,15 +46,15 @@ static const fix3_28_t fix16_one = 0x10000000;
/// @brief Represents zero in fixed point world.
static const fix3_28_t fix16_zero = 0x00000000;
static inline fix3_28_t norm_fix3_28_from_s16sample(int16_t);
static inline int32_t norm_fix3_28_to_s16sample(fix3_28_t);
static inline fix3_28_t fix3_28_from_flt(float);
static inline fix3_28_t fix3_28_from_dbl(double);
static inline fix3_28_t fix16_mul(fix3_28_t, fix3_28_t);
#include "fix16.inl"
#endif
fix3_28_t norm_fix3_28_from_s16sample(int16_t);
int16_t norm_fix3_28_to_s16sample(fix3_28_t);
fix3_28_t fix3_28_from_dbl(double);
fix3_28_t fix16_mul(fix3_28_t, fix3_28_t);
#endif

View File

@ -52,12 +52,10 @@ static uint8_t *userbuf;
audio_state_config audio_state = {
.freq = 48000,
.de_emphasis_frequency = 0x1, // 48khz
.interface = 0
};
preprocessing_config preprocessing = {
.preamp = fix16_one,
.postEQGain = fix16_one,
.reverse_stereo = false
};
@ -120,24 +118,12 @@ static void update_volume()
// PCM data into I2S data that gets shipped out to the PCM3060. It really
// belongs with the other USB-related code due to its utter indecipherability,
// but it's placed here to emphasize its importance.
static void __no_inline_not_in_flash_func(_as_audio_packet)(struct usb_endpoint *ep) {
static void _as_audio_packet(struct usb_endpoint *ep) {
struct usb_buffer *usb_buffer = usb_current_out_packet_buffer(ep);
int16_t *in = (int16_t *) usb_buffer->data;
int32_t *out = (int32_t *) userbuf;
int samples = usb_buffer->data_len / 2;
// Make sure core 1 is ready for us.
multicore_fifo_pop_blocking();
if (save_config()) {
// Skip processing while we are writing to flash
multicore_fifo_push_blocking(CORE0_ABORTED);
// keep on truckin'
usb_grow_transfer(ep->current_transfer, 1);
usb_packet_done(ep);
return;
}
if (preprocessing.reverse_stereo) {
for (int i = 0; i < samples; i+=2) {
out[i] = in[i+1];
@ -149,23 +135,22 @@ static void __no_inline_not_in_flash_func(_as_audio_packet)(struct usb_endpoint
out[i] = in[i];
}
// Make sure core 1 is ready for us.
multicore_fifo_pop_blocking();
multicore_fifo_push_blocking(CORE0_READY);
multicore_fifo_push_blocking(samples);
for (int j = 0; j < filter_stages; j++) {
// Left channel filter
for (int i = 0; i < samples; i += 2) {
fix3_28_t x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preprocessing.preamp);
for (int j = 0; j < filter_stages; j++) {
x_f16 = bqf_transform(x_f16, &bqf_filters_left[j],
&bqf_filters_mem_left[j]);
}
/* Apply post-EQ gain. */
x_f16 = fix16_mul( x_f16, preprocessing.postEQGain);
out[i] = (int32_t) norm_fix3_28_to_s16sample(x_f16);
}
}
// Block until core 1 has finished transforming the data
uint32_t ready = multicore_fifo_pop_blocking();
@ -184,7 +169,7 @@ static void __no_inline_not_in_flash_func(_as_audio_packet)(struct usb_endpoint
usb_packet_done(ep);
}
void __no_inline_not_in_flash_func(core1_entry)() {
void core1_entry() {
uint8_t *userbuf = (uint8_t *) multicore_fifo_pop_blocking();
int32_t *out = (int32_t *) userbuf;
@ -197,23 +182,20 @@ void __no_inline_not_in_flash_func(core1_entry)() {
// Block until the userbuf is filled with data
uint32_t ready = multicore_fifo_pop_blocking();
if (ready == CORE0_ABORTED) continue;
while (ready != CORE0_READY)
ready = multicore_fifo_pop_blocking();
const uint32_t samples = multicore_fifo_pop_blocking();
/* Right channel EQ. */
for (int i = 1; i < samples; i += 2) {
/* Apply EQ pre-filter gain to avoid clipping. */
fix3_28_t x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preprocessing.preamp);
/* Apply the biquad filters one by one. */
for (int j = 0; j < filter_stages; j++) {
for (int i = 1; i < samples; i += 2) {
fix3_28_t x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preprocessing.preamp);
x_f16 = bqf_transform(x_f16, &bqf_filters_right[j],
&bqf_filters_mem_right[j]);
}
/* Apply post-EQ gain. */
x_f16 = fix16_mul( x_f16, preprocessing.postEQGain);
out[i] = (int32_t) norm_fix3_28_to_s16sample(x_f16);
out[i] = (int16_t) norm_fix3_28_to_s16sample(x_f16);
}
}
// Signal to core 0 that the data has all been transformed
@ -265,7 +247,7 @@ void setup() {
// The PCM3060 supports standard mode (100kbps) or fast mode (400kbps)
// we run in fast mode so we dont block the core for too long while
// updating the volume.
i2c_init(i2c0, 400000);
i2c_init(i2c0, 100000);
gpio_set_function(PCM3060_SDA_PIN, GPIO_FUNC_I2C);
gpio_set_function(PCM3060_SCL_PIN, GPIO_FUNC_I2C);
gpio_pull_up(PCM3060_SDA_PIN);
@ -291,9 +273,9 @@ void setup() {
// Same here, pal. Hands off.
sleep_ms(100);
// Set data format to 24 bit right justified, MSB first
// Set data format to 16 bit right justified, MSB first
buf[0] = 67; // register addr
buf[1] = 0x02; // data
buf[1] = 0x03; // data
i2c_write_blocking(i2c0, PCM_I2C_ADDR, buf, 2, false);
i2s_write_obj.sck_pin = PCM3060_DAC_SCK_PIN;
@ -309,7 +291,6 @@ void setup() {
* IF YOU DO, YOU COULD BLOW UP YOUR HARDWARE! *
* YOU WERE WARNED!!!!!!!!!!!!!!!! *
****************************************************************************/
// TODO: roundf will be much faster than round, but it might mess with timings
void configure_neg_switch_pwm() {
gpio_set_function(NEG_SWITCH_PWM_PIN, GPIO_FUNC_PWM);
uint slice_num = pwm_gpio_to_slice_num(NEG_SWITCH_PWM_PIN);
@ -770,7 +751,6 @@ static const struct usb_transfer_type _audio_cmd_transfer_type = {
static bool as_set_alternate(struct usb_interface *interface, uint alt) {
assert(interface == &as_op_interface);
audio_state.interface = alt;
switch (alt) {
case 0: power_down_dac(); return true;
case 1: power_up_dac(); return true;

View File

@ -76,7 +76,6 @@ typedef struct _audio_state_config {
int16_t _target_pcm3060_registers;
};
int16_t pcm3060_registers;
int8_t interface;
} audio_state_config;
extern audio_state_config audio_state;
@ -111,8 +110,6 @@ typedef struct _audio_device_config {
typedef struct _preprocessing_config {
fix3_28_t preamp;
/// @brief Apply this gain after applying EQ, to set output volume without causing overflow in the EQ calculations.
fix3_28_t postEQGain;
int reverse_stereo;
} preprocessing_config;
@ -150,7 +147,6 @@ static char *descriptor_strings[] = {
#define SAMPLING_FREQ (CODEC_FREQ / 192)
#define CORE0_READY 19813219
#define CORE0_ABORTED 91231891
#define CORE1_READY 72965426
/*****************************************************************************

View File

@ -6,6 +6,7 @@ set(CMAKE_CXX_STANDARD 17)
add_executable(filter_test
filter_test.c
../code/fix16.c
../code/bqf.c
../code/configuration_manager.c
)

View File

@ -17,7 +17,7 @@ Run `filter_test` to process the PCM samples. The `filter_test` program takes tw
You can listen to the PCM files using ffplay (which is usually included with ffmpeg):
```
ffplay -f s24le -ar 48000 -ac 2 output.pcm
ffplay -f s16le -ar 48000 -ac 2 output.pcm
```
If there are no obvious problems, go ahead and flash your firmware.

View File

@ -32,7 +32,7 @@ int main(int argc, char* argv[])
// we dont need to store the whole input and output files in memory.
int samples = input_size / 2;
int16_t *in = (int16_t *) calloc(samples, sizeof(int16_t));
int32_t *out = (int32_t *) calloc(samples, sizeof(int32_t));
int16_t *out = (int16_t *) calloc(samples, sizeof(int16_t));
fread(in, samples, sizeof(int16_t), input);
fclose(input);
@ -54,39 +54,31 @@ int main(int argc, char* argv[])
out[i] = in[i];
}
const fix3_28_t preamp = fix3_28_from_flt(0.92f);
for (int j = 0; j < filter_stages; j++)
{
for (int i = 0; i < samples; i ++)
{
// Left channel filter
fix3_28_t x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preamp);
fix16_t x_f16 = fix16_from_s16sample((int16_t) out[i]);
for (int j = 0; j < filter_stages; j++)
{
x_f16 = bqf_transform(x_f16, &bqf_filters_left[j],
&bqf_filters_mem_left[j]);
}
out[i] = (int32_t) norm_fix3_28_to_s16sample(x_f16);
out[i] = (int32_t) fix16_to_s16sample(x_f16);
// Right channel filter
i++;
x_f16 = fix16_mul(norm_fix3_28_from_s16sample((int16_t) out[i]), preamp);
x_f16 = fix16_from_s16sample((int16_t) out[i]);
for (int j = 0; j < filter_stages; j++)
{
x_f16 = bqf_transform(x_f16, &bqf_filters_right[j],
&bqf_filters_mem_right[j]);
}
out[i] = (int32_t) norm_fix3_28_to_s16sample(x_f16);
//printf("%08x\n", out[i]);
out[i] = (int16_t) fix16_to_s16sample(x_f16);
}
}
// Write out the processed audio.
for (int i=0; i<samples; i++) {
fwrite(&out[i], 3, sizeof(int8_t), output);
}
fwrite(out, samples, sizeof(int16_t), output);
fclose(output);
free(in);