70 lines
2.0 KiB
Python
70 lines
2.0 KiB
Python
import magic
|
|
import mimetypes
|
|
import re
|
|
|
|
from django.db.models import Q
|
|
|
|
|
|
def normalize_query(query_string,
|
|
findterms=re.compile(r'"([^"]+)"|(\S+)').findall,
|
|
normspace=re.compile(r'\s{2,}').sub):
|
|
''' Splits the query string in invidual keywords, getting rid of unecessary spaces
|
|
and grouping quoted words together.
|
|
Example:
|
|
|
|
>>> normalize_query(' some random words "with quotes " and spaces')
|
|
['some', 'random', 'words', 'with quotes', 'and', 'spaces']
|
|
|
|
'''
|
|
return [normspace(' ', (t[0] or t[1]).strip()) for t in findterms(query_string)]
|
|
|
|
|
|
def get_query(query_string, search_fields):
|
|
''' Returns a query, that is a combination of Q objects. That combination
|
|
aims to search keywords within a model by testing the given search fields.
|
|
|
|
'''
|
|
query = None # Query to search for every search term
|
|
terms = normalize_query(query_string)
|
|
for term in terms:
|
|
or_query = None # Query to search for a given term in each field
|
|
for field_name in search_fields:
|
|
q = Q(**{"%s__icontains" % field_name: term})
|
|
if or_query is None:
|
|
or_query = q
|
|
else:
|
|
or_query = or_query | q
|
|
if query is None:
|
|
query = or_query
|
|
else:
|
|
query = query & or_query
|
|
return query
|
|
|
|
|
|
def guess_mimetype(f):
|
|
b = min(100000, f.size)
|
|
t = magic.from_buffer(f.read(b), mime=True)
|
|
if t == 'application/octet-stream':
|
|
# failure, we try guessing by extension
|
|
mt, _ = mimetypes.guess_type(f.path)
|
|
if mt:
|
|
t = mt
|
|
return t
|
|
|
|
|
|
def compute_status(jobs):
|
|
errored = any([job.status == 'errored' for job in jobs])
|
|
if errored:
|
|
return 'errored'
|
|
pending = any([job.status == 'pending' for job in jobs])
|
|
if pending:
|
|
return 'pending'
|
|
return 'finished'
|
|
|
|
|
|
def get_ext_from_type(mimetype):
|
|
mapping = {
|
|
'audio/ogg': 'ogg',
|
|
'audio/mpeg': 'mp3',
|
|
}
|