update docs and remove comments
This commit is contained in:
parent
d162ee69a3
commit
564255adee
|
@ -127,7 +127,9 @@ If you want to run local speech-to-text using Whisper, you must install Rust. Fo
|
|||
|
||||
## Customizations
|
||||
|
||||
To customize the behavior of the system, edit the [system message, model, skills library path,](https://docs.openinterpreter.com/settings/all-settings) etc. in `i.py`. This file sets up an interpreter, and is powered by Open Interpreter.
|
||||
To customize the behavior of the system, edit the [system message, model, skills library path,](https://docs.openinterpreter.com/settings/all-settings) etc. in the `profiles` directory under the `server` directory. This file sets up an interpreter, and is powered by Open Interpreter.
|
||||
|
||||
To specify the text-to-speech service for the 01 `base_device.py`, set `interpreter.tts` to either "openai" for OpenAI, "elevenlabs" for ElevenLabs, or "coqui" for Coqui (local) in a profile.
|
||||
|
||||
## Ubuntu Dependencies
|
||||
|
||||
|
|
|
@ -91,7 +91,6 @@ class Device:
|
|||
self.server_url = ""
|
||||
self.ctrl_pressed = False
|
||||
self.tts_service = ""
|
||||
self.playback_latency = None
|
||||
|
||||
def fetch_image_from_camera(self, camera_index=CAMERA_DEVICE_INDEX):
|
||||
"""Captures an image from the specified camera device and saves it to a temporary file. Adds the image to the captured_images list."""
|
||||
|
@ -165,10 +164,6 @@ class Device:
|
|||
while True:
|
||||
try:
|
||||
audio = await self.audiosegments.get()
|
||||
if self.playback_latency and isinstance(audio, bytes):
|
||||
elapsed_time = time.time() - self.playback_latency
|
||||
print(f"Time from request to playback: {elapsed_time} seconds")
|
||||
self.playback_latency = None
|
||||
|
||||
if self.tts_service == "elevenlabs":
|
||||
mpv_process.stdin.write(audio) # type: ignore
|
||||
|
@ -224,7 +219,6 @@ class Device:
|
|||
stream.stop_stream()
|
||||
stream.close()
|
||||
print("Recording stopped.")
|
||||
self.playback_latency = time.time()
|
||||
|
||||
duration = wav_file.getnframes() / RATE
|
||||
if duration < 0.3:
|
||||
|
|
|
@ -22,11 +22,6 @@ import os
|
|||
|
||||
class AsyncInterpreter:
|
||||
def __init__(self, interpreter):
|
||||
self.stt_latency = None
|
||||
self.tts_latency = None
|
||||
self.interpreter_latency = None
|
||||
self.time_from_first_yield_to_first_put = None
|
||||
|
||||
self.interpreter = interpreter
|
||||
|
||||
# STT
|
||||
|
@ -128,9 +123,7 @@ class AsyncInterpreter:
|
|||
|
||||
# Experimental: The AI voice sounds better with replacements like these, but it should happen at the TTS layer
|
||||
# content = content.replace(". ", ". ... ").replace(", ", ", ... ").replace("!", "! ... ").replace("?", "? ... ")
|
||||
print("yielding ", content)
|
||||
if self.time_from_first_yield_to_first_put is None:
|
||||
self.time_from_first_yield_to_first_put = time.time()
|
||||
# print("yielding ", content)
|
||||
|
||||
yield content
|
||||
|
||||
|
@ -162,9 +155,6 @@ class AsyncInterpreter:
|
|||
)
|
||||
|
||||
# Send a completion signal
|
||||
end_interpreter = time.time()
|
||||
self.interpreter_latency = end_interpreter - start_interpreter
|
||||
print("INTERPRETER LATENCY", self.interpreter_latency)
|
||||
# self.add_to_output_queue_sync({"role": "server","type": "completion", "content": "DONE"})
|
||||
|
||||
async def run(self):
|
||||
|
@ -179,11 +169,7 @@ class AsyncInterpreter:
|
|||
while not self._input_queue.empty():
|
||||
input_queue.append(self._input_queue.get())
|
||||
|
||||
start_stt = time.time()
|
||||
message = self.stt.text()
|
||||
end_stt = time.time()
|
||||
self.stt_latency = end_stt - start_stt
|
||||
print("STT LATENCY", self.stt_latency)
|
||||
|
||||
print(message)
|
||||
|
||||
|
@ -210,23 +196,11 @@ class AsyncInterpreter:
|
|||
"end": True,
|
||||
}
|
||||
)
|
||||
end_tts = time.time()
|
||||
self.tts_latency = end_tts - self.tts.stream_start_time
|
||||
print("TTS LATENCY", self.tts_latency)
|
||||
self.tts.stop()
|
||||
break
|
||||
|
||||
async def _on_tts_chunk_async(self, chunk):
|
||||
print("adding chunk to queue")
|
||||
if (
|
||||
self.time_from_first_yield_to_first_put is not None
|
||||
and self.time_from_first_yield_to_first_put != 0
|
||||
):
|
||||
print(
|
||||
"time from first yield to first put is ",
|
||||
time.time() - self.time_from_first_yield_to_first_put,
|
||||
)
|
||||
self.time_from_first_yield_to_first_put = 0
|
||||
# print("adding chunk to queue")
|
||||
await self._add_to_queue(self._output_queue, chunk)
|
||||
|
||||
def on_tts_chunk(self, chunk):
|
||||
|
@ -234,8 +208,5 @@ class AsyncInterpreter:
|
|||
asyncio.run(self._on_tts_chunk_async(chunk))
|
||||
|
||||
async def output(self):
|
||||
print("outputting chunks")
|
||||
# print("outputting chunks")
|
||||
return await self._output_queue.get()
|
||||
|
||||
def shutdown(self):
|
||||
self.stt.shutdown()
|
||||
|
|
|
@ -1,9 +1,13 @@
|
|||
# TODO: import from the profiles directory the interpreter that should be served!!
|
||||
# import from the profiles directory the interpreter to be served
|
||||
|
||||
from .profiles.fast import interpreter as base_interpreter
|
||||
# add other profiles to the directory to define other interpreter instances and import them here
|
||||
# {.profiles.fast: optimizes for STT/TTS latency with the fastest models }
|
||||
# {.profiles.local: uses local models and local STT/TTS }
|
||||
# {.profiles.default: uses default interpreter settings with optimized TTS latency }
|
||||
|
||||
# from .profiles.fast import interpreter as base_interpreter
|
||||
# from .profiles.local import interpreter as base_interpreter
|
||||
# from .profiles.default import interpreter as base_interpreter
|
||||
from .profiles.default import interpreter as base_interpreter
|
||||
|
||||
import asyncio
|
||||
import traceback
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
# tests currently hang after completion
|
||||
|
||||
"""
|
||||
import pytest
|
||||
import signal
|
||||
|
|
|
@ -3,9 +3,9 @@ from interpreter import interpreter
|
|||
# This is an Open Interpreter compatible profile.
|
||||
# Visit https://01.openinterpreter.com/profile for all options.
|
||||
|
||||
# 01 suports OpenAI, ElevenLabs, and Coqui (Local) TTS providers
|
||||
# 01 supports OpenAI, ElevenLabs, and Coqui (Local) TTS providers
|
||||
# {OpenAI: "openai", ElevenLabs: "elevenlabs", Coqui: "coqui"}
|
||||
interpreter.tts = "openai"
|
||||
interpreter.tts = "elevenlabs"
|
||||
|
||||
# Connect your 01 to a language model
|
||||
interpreter.llm.model = "gpt-4-turbo"
|
||||
|
|
|
@ -3,7 +3,7 @@ from interpreter import interpreter
|
|||
# This is an Open Interpreter compatible profile.
|
||||
# Visit https://01.openinterpreter.com/profile for all options.
|
||||
|
||||
# 01 suports OpenAI, ElevenLabs, and Coqui (Local) TTS providers
|
||||
# 01 supports OpenAI, ElevenLabs, and Coqui (Local) TTS providers
|
||||
# {OpenAI: "openai", ElevenLabs: "elevenlabs", Coqui: "coqui"}
|
||||
interpreter.tts = "elevenlabs"
|
||||
|
||||
|
@ -16,27 +16,9 @@ interpreter.llm.context_window = 2048
|
|||
interpreter.llm.max_tokens = 4096
|
||||
interpreter.llm.temperature = 0.8
|
||||
|
||||
# interpreter.llm.api_key = os.environ["GROQ_API_KEY"]
|
||||
|
||||
interpreter.computer.import_computer_api = False
|
||||
|
||||
interpreter.auto_run = True
|
||||
interpreter.system_message = (
|
||||
"You are a helpful assistant that can answer questions and help with tasks."
|
||||
)
|
||||
|
||||
# TODO: include other options in comments in the profiles for tts
|
||||
# direct people to the profiles directory to make changes to the interpreter profile
|
||||
# this should be made explicit on the docs
|
||||
|
||||
"""
|
||||
llm_service: str = "litellm",
|
||||
model: str = "gpt-4",
|
||||
llm_supports_vision: bool = False,
|
||||
llm_supports_functions: bool = False,
|
||||
context_window: int = 2048,
|
||||
max_tokens: int = 4096,
|
||||
temperature: float = 0.8,
|
||||
tts_service: str = "elevenlabs",
|
||||
stt_service: str = "openai",
|
||||
"""
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
from interpreter import interpreter
|
||||
|
||||
# 01 suports OpenAI, ElevenLabs, and Coqui (Local) TTS providers
|
||||
# 01 supports OpenAI, ElevenLabs, and Coqui (Local) TTS providers
|
||||
# {OpenAI: "openai", ElevenLabs: "elevenlabs", Coqui: "coqui"}
|
||||
interpreter.tts = "coqui"
|
||||
|
||||
|
|
Loading…
Reference in New Issue